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S O C I A L  S C I E N C E S

Leadership or luck? Randomization inference for leader 
effects in politics, business, and sports
Christopher R. Berry* and Anthony Fowler*†

Anecdotal evidence suggests that some leaders are more effective than others but observed differences in outcomes 
between leaders could be attributable to chance variation. To solve this inferential problem, we develop a quantitative 
test of leader effects that provides more reliable inferences than previous strategies, and we implement the test in the 
settings of politics, business, and sports. We find significant effects of political leaders, particularly in nondemocracies. 
We find little evidence that chief executive officers influence the performance of their firms. In addition, we find clear 
evidence that sports coaches matter for a wide range of outcomes in football, basketball, baseball, and hockey.

INTRODUCTION
The U.S. economy grew at an annual rate of over 6% during Harry 
Truman’s second term, faster than under any other postwar presi-
dent. Under the leadership of Rahm Emanuel, homicides in Chicago 
increased 70% between 2014 and 2018. Bill Belichick led the New 
England Patriots to six Super Bowl titles in 18 seasons. After Jonathan 
Schwartz became chief executive officer (CEO) of Sun Microsystems, 
the firm’s share price fell from 27 to 4 dollars.

How much credit do leaders such as Truman and Belichick de-
serve for the outcomes that happened on their watch? How much 
blame should fall at the feet of those similar to Emanuel and Schwartz? 
Do the decisions and actions of leaders change the course of events, 
or are some merely (un)lucky, holding their position at a time when 
other factors would have generated largely the same outcomes re-
gardless of who sat at the helm? This question, whether leaders mat-
ter, has fascinated scholars for centuries. Today, universities offer 
advanced degrees in leadership, and airport bookstores feature best-
sellers on the topic, implying a settled conclusion that leaders matter. 
However, there is little rigorous empirical evidence on the effects of 
leaders.

Here, we introduce a new method for statistically testing leader 
effects, which has several advantages relative to other methods that 
have been used previously. We call this method randomization in-
ference for leader effects or RIFLE. After assessing the advantages 
and limitations of our method, we demonstrate its substantive value 
by estimating effects of political leaders, CEOs, and sports coaches 
on various outcomes.

To preview our results, we find strong evidence that world leaders 
influence their economies, more so in autocracies than in democra-
cies. We find that governors influence fiscal policy and crime, but 
not overall economic prosperities, and we find no evidence that 
mayors are similarly influential. We find little evidence that CEOs 
systematically affect the performance of the firms that they lead. Our 
estimated leader effects are largest in the realm of sports, at both 
the professional and collegiate levels, where we find evidence that 
coaches significantly influence their team’s records and various ad-
ditional measures of on-field performance.

The subject of leadership has fascinated scholars at least back to 
the ancient Greeks. In addition, for only as long, scholars have de-
bated whether leaders matter in shaping outcomes for better or worse. 

Thucydides chronicled the great leaders, such as Pericles, whose 
particular decisions and abilities, in his view, determined the out-
come of the Peloponnesian War. Meanwhile, Plato extolled the vir-
tues of the philosopher king while advocating a system of education 
and selection that would make any individual leader replaceable by 
another who would make similar decisions.

In the 19th century, Carlyle (1) advanced the still influential view 
that “the history of the world is but the biography of great men.” 
However, his contemporary, Marx (2), argued that historically de-
termined social and economic forces constrain the choices available 
to leaders, making any individual relatively unimportant in the course 
of events.

More recently, the role of political leadership has been overshad-
owed in economics and political science by the role of institutions 
in determining the fate of nations. Building on the work of North 
(3), a dominant theme in the contemporary literature on economic 
development is that good institutions are a major contributor to 
long-run economic growth (4), although empirically identifying the 
effects of institutions is not unproblematic (5).

A seminal paper by Jones and Olken (6) rekindled interest in the 
empirical study of political leadership by providing the most credible 
evidence to date that political leaders matter. They use unexpected 
deaths of world leaders while in office as a source of exogenous vari-
ation in leadership. They show that the rate of economic growth in 
a country changes when a leader dies in office. Their key empirical 
test is whether the change in economic growth between the last 
2 years of one leader’s tenure and the first 2 years under the succes-
sor is greater than would be expected by chance. They find strong 
evidence of abnormal variation in growth around exogenous leader 
transitions, which implies that leaders matter. They show further 
evidence that unexpected leader turnover leads to changes in eco-
nomic growth in autocracies but not democracies.

The findings of Jones and Olken (6) have been extended in several 
ways by subsequent authors. Besley et al. (7) find that educated leaders 
particularly exert a positive effect on economic growth. Within the 
Jones-Olken framework, they show that a transition from a more 
educated to a less educated leader results in a reduction in economic 
growth, while a transition from a less educated to a more educated 
leader leads to a boost in economic growth. Yao and Zhang (8) an-
alyze the effects of city leaders in China on local economic growth, 
taking advantage of the fact that leaders regularly move, so that the 
same person may be the mayor of multiple cities over the course of 
her career. Yao and Zhang (8) use all leader transitions in their analysis 
rather than identifying unexpected transitions as in Jones and Olken (6), 
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and they find mixed results depending on the statistical test they 
consider. Easterly and Pennings (9) challenge Jones and Olken’s (6) 
conclusion that leaders matter more in autocracies than in de-
mocracies. Specifically, Easterly and Pennings (9) estimate leader fixed 
effects in a growth model and show that the variance of the fixed 
effects is at least as large in democracies as in autocracies. While 
there is more total variability in growth rates in autocracies, they 
contend that the amount of variation attributable to leaders is higher 
in democracies.

There is also interest in the effectiveness of well- compensated 
business leaders. To investigate the effects of CEOs on the success 
of their firms, many researchers have conducted variance decom-
positions, which use regressions to estimate how much variance in 
an outcome of interest is explained by adding CEO- specific vari-
ables [see (10) for a review]. These studies typically report large 
effects, but for reasons we discuss below, these studies are likely to 
overstate the importance of CEOs.

In the realm of sports, analytics is becoming more prevalent and 
influential, but most of the analysis is devoted to player perform-
ance rather than coaching and leadership. Several studies have 
investigated the effects of coaching transitions, typically finding 
small effects [e.g., (11)]. Other studies use methods similar to the 
variance decomposition approach in the CEO literature and find 
that coaches explain a meaningful share of variation in the success 
of their teams [e.g., (12)].

MATERIALS AND METHODS
Our goal is to provide a general test of whether leaders matter for 
particular outcomes of interest. As with the previous literature, we 
cannot estimate the effects of any individual leader with statistical 
confidence, but we can ask whether leaders matter in the aggregate. 
Are some leaders better than others, such that we can statistically 
reject the null hypothesis that all leaders are the same with respect 
for a particular outcome? After introducing our method, we com-
pare it with other methods used in the prior literature and explain 
how it can improve upon or complement them.

There are several methodological challenges associated with es-
timating leader effects. A key challenge, and the primary focus of 
this paper, is inference. Suppose that we observe some apparent 
correlation between leaders and outcomes as in the examples dis-
cussed in Introduction. We would expect some of that apparent 
correlation just by chance, and we would like to account for the 
idiosyncrasies of luck to determine whether that correlation is in-
deed statistically significant. As we will show, because of random 
noise and serial correlation in leaders and outcomes, existing meth-
ods often fail to distinguish leadership from luck.

Another set of challenges has to do with identification. If we de-
tect a statistically significant relationship between leaders and out-
comes, then it might be attributable to leader effects, or there might 
be other reasons that outcomes systematically correspond with 
leaders. For example, if the outcome of interest affects leader turn-
over, then this could also generate a correlation between leaders and 
outcomes. Although we cannot entirely remove these concerns, we 
can show through simulations that the substantive relevance of 
these identification concerns is minimal in the settings we study.

Our general strategy involves regressing an outcome on leader 
fixed effects, recording a summary statistic of fit, and then simulat-
ing the distribution of summary statistics that we would expect un-

der the null. As summary statistics of fit, the r2, adjusted r2, and 
F statistic will all produce identical P values and implied effect sizes 
in our subsequent analyses because, for a given sample size and 
number of regressors, these statistics all increase monotonically as 
the others increase. For the purposes of this paper, we focus on the 
r2 statistic, which is familiar to social scientists and has a substantive 
interpretation as the proportion of variation in the outcome that 
appears to be explained by the leader fixed effects. However, if sub-
sequent practitioners would prefer using another fit statistic, then 
that is perfectly allowable within our framework.

In and of itself, the r2 statistic is not particularly informative. A 
high value could reflect leader effects, but it could also reflect within- 
unit variation over time unrelated to leader effects, or it could 
suggest that the regression with many independent variables over-
fit random variation in the outcome. Therefore, we need a strategy 
for simulating the distribution of r2 statistics that we would expect 
under the null hypothesis of no leader effects. To do this, we ran-
domly permute the ordering of leaders within each unit, keeping 
the tenure of each leader the same as in the real data but varying the 
order in which each leader served. For each random permutation, 
we again regress growth on leader fixed effects and record the r2 
statistic. We repeat this procedure many times to estimate the dis-
tribution of r2 statistics we would obtain under the null of no leader 
effects. The proportion of random permutations that produce an r2 
statistic greater than that from the real data is an estimated P value, 
testing the null hypothesis that all leaders are equally effective with 
respect to this particular outcome.

These hypothesis tests are one sided because genuine leader ef-
fects can only increase the real r2 statistic relative to the expected r2 
statistic under the null, and there will never be a situation where we 
would expect that the real r2 to be lower than the average simulated 
r2. In some cases, of course, the real r2 statistic can turn out to be 
smaller than the average simulated r2, but this would not constitute 
any evidence of leader effects. If there are no leader effects, then the 
real r2 statistic will be larger than the simulated average half the 
time, and the other half the time, it will be smaller.

Before implementing our method, we typically take several steps 
to prepare the data for analysis and improve statistical precision. 
These steps are optional and should likely vary depending on the 
substantive setting being studied. For example, we can demean the 
outcome by year to remove consistent time trends across units. We 
could also demean by unit but this would have no impact on our 
subsequent P values. Our inferential strategy implicitly accounts for 
variation across units. We might also want to partial out the effects 
of other factors that are unrelated to the leader effects of interest. 
For example, when studying sports coaches, we partial out measures 
of opponent quality and home field advantage. If there are any ob-
servations with missing data, then we drop those observations and 
stitch together blocks of time, coding a new time variable so that we 
have a single, contiguous stretch of time with complete data for each 
unit. This step allows us to take advantage of all the observations 
with nonmissing values when permuting the data.

Having processed the data, we regress our outcome of interest 
on leader fixed effects and record the r2 statistic. Then, to simulate 
the distribution of r2 statistics that we would expect under the null, 
we randomly permute the leader identifiers, keeping each leader 
stint together as a block in each permutation, rerun the regression 
of the outcome on leader fixed effects, and repeat this procedure 
many times.
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The summary of our procedure is as follows:
 1)Regress the outcome on leader fixed effects and record the 

r2 statistic.
2)Randomly permute leaders within each unit, sampling each 

leader stint as a block.
3)Regress the outcome on the permuted leader fixed effects and 

record the r2 statistic.
4)Repeat steps 2 and 3 many times, recording the proportion of 

cases where the r2 from the permuted data is greater than that from 
the real data.

Our procedure is closely related to many others using some form 
of permutation test or randomization inference [e.g., (13–16)]. One 
distinction between our approach and a canonical application is 
that we are not estimating a treatment effect directly. Instead, we 
use permutation tests to estimate the distribution of r2 statistics that 
we would expect under a null hypothesis of no leader effects. Our 
approach is also closely related to methods for testing hypotheses 
about multiple treatments [e.g., (17), pp. 963 to 967]. One could 
think of each leader as a separate treatment, where we want to test 
whether the treatment effects are jointly distinguishable from one 
another. However, rather than using conventional approaches, we 
must use blocked randomization inference to account for time trends 
and serial correlation.

The logic of our random permutation tests is as follows. Assume 
that leader transitions are unrelated to potential outcomes, such 
that in the absence of any leader effects, there should be no system-
atic correspondence between leader indicators and outcomes. There 
are three ways we can get a high r2 statistic when we regress growth 
on leader indicators. First, there could be leader effects, and this is 
what we would like to identify. Second, there could be serial correla-
tion or genuine trends in an outcome over time within units even in 
the absence of leader effects, and the leaders who happened to serve 
in good (or bad) times will get credit for this in the regression. 
Third, the leader fixed effects could be overfit to random, year-to-
year fluctuations in the outcome or even measurement error, fur-
ther inflating the r2 statistic. Therefore, to test for leader effects, we 
would like our random permutation tests to incorporate the last two 
factors but not (all of) the first.

In our random permutations, the number of fixed effects in each 
regression is held constant, and the distribution of tenure across 
leaders is also held constant. This means that the extent of overfit-
ting is the same, in expectation, in the real data and the permuted 
data. This assumes that the researcher does not use the observed 
data to make specification choices or conduct multiple tests and se-
lectively report the significant ones. If a careless researcher modi-
fied the above procedure to better fit the observed data or selectively 
reported the results of multiple tests, then the resulting P values 
would be misleading. This is, of course, a concern with virtually all 
quantitative analyses, although we attempt to mitigate these concerns 
in this case by specifying a simple and generalizable procedure that 
will be applied in the same way to different datasets.

Furthermore, although serial correlation or unit-specific time 
trends unrelated to leaders will inflate the r2 in the real regression, 
they should inflate the r2 from the permuted regressions to the 
same degree. However, if there are genuine leader effects, then this 
will increase the r2 in the real regression by more than it increases 
the r2 in the permuted regressions. Therefore, if the r2 from the real 
data is larger than that from the random permutations, then this is 
an indication that variation in the outcome coincides with the inter-

vals of time in which different leaders served, suggesting that some 
portion of that r2 statistic can be attributed to leader effects rather 
than just serial correlation or chance.

Our practice of sampling each leader as a block and maintaining 
the same distribution of contiguous periods of service in our permu-
tations is important. To our knowledge, the approach in the litera-
ture closest to our own is a robustness check from Yao and Zhang 
[(8), p. 420]. However, instead of sampling each leader as a block, 
Yao and Zhang (8) sample each year independently such that leaders’ 
terms are no longer contiguous in the random permutations. This 
approach accounts for the possibility of overfitting discussed above, 
but it does not account for the possibility of serial correlation or 
unit-specific time trends, and as a result, this test is likely to reject 
the null even if there are no leader effects.

To understand how our method performs in different scenarios, 
let us consider how various features of the data generating process 
will influence the r2 statistic in the real and permuted datasets. Re-
call that all of the regressions run under RIFLE will include a set of 
leader fixed effects. By definition,   r   2  ≡ 1 −  RSS _ TSS   , where RSS is the 
residual sum of squares and TSS is the total sum of squares. In our 
regressions, the TSS is identical for both the real data and the per-
muted data where the ordering of leaders is randomly shuffled. 
Therefore, to think about how our method works, we need to think 
about how leader effects, time effects, and random noise influence 
the RSS. Random noise increases the RSS, and it increases the RSS 
in the same way, in expectation, in the real dataset and the permuted 
datasets. If the noise was expected to affect the RSS differently in the 
real data, then it would not be random. Similarly, time effects that 
are unrelated to leaders’ tenures will also increase the RSS, and they 
will increase the RSS the same way, in expectation, in the real and 
the permuted datasets. This is why our method of permuting lead-
er’s tenures accounts for noise and time trends unrelated to leaders.

How do leader effects influence the RSS? A constant effect for 
each leader should have no effect on the RSS in the real dataset. In 
this context,  RSS ≡  Σ  i    Σ  t     (    Y  it   =    ̄  Y    i   )     2  , where i denotes leaders and 
t denotes observations within each leader. That is, the RSS is the 
sum of squared deviations of each data point from the mean for 
each leader. A constant effect for each leader would mean that the 
outcome is shifted by the same amount for all observations of each 
leader, such that each Yit would be shifted by the same amount as 
each     ̄  Y    i    and the RSS would be unchanged by leader effects. However, 
in the permuted datasets, leader effects would increase the RSS. For 
each permuted leader’s tenure that overlaps with multiple actual 
leader’s tenures, leader effects will shift observations by different 
amounts within each permuted leader, thereby increasing the RSS. 
This means that in the presence of genuine leader effects, we expect 
the RSS to be lower for the real dataset than in the permuted data-
sets, meaning that the r2 will be higher.

To fix ideas, consider the simplest possible example where our 
test would allow us to say something about leader effects. Suppose 
that there is one unit with two leaders and three periods. Without 
loss of generality, suppose that leader A served during the first two 
periods and leader B served during the last period. In this simple 
example, there are only two ways to permute the leaders. We can 
assign leader A to the first two periods, as in the real world, or we can 
assign her to the last two periods. If leader A is better than leader B, 
or vice versa, then we would expect the outcome from the first two 
periods to be more similar to each other than they are to the value 
from the third period, and the real data will give a higher r2 statistic. 
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If there are no leader effects but there is random noise or serial 
correlation, then either permutation is equally likely to give a 
higher r2.

This simple example illustrates several features and limitations 
our approach. First, identification comes from leaders who serve 
different periods of time. If there were four periods and each leader 
served two periods, then both permutations would yield the same 
r2. Next, our procedure behaves poorly when there are few leaders. 
In the example above, the P value can only take one of two possible 
values, but asymptotic refinement improves quickly with more 
units or more leaders per unit, so long as there is variation in lengths 
of service. Furthermore, our procedure requires that we put some 
structure on the timing of leader effects. Suppose that a leader’s 
actions affect the outcome in the next year. In that case, we would 
have no opportunity to detect leader effects in the simple example 
above. For our subsequent analyses, we will assume that leaders 
only affect outcomes in the years in which they serve, but one could 
easily conduct separate tests where they assume that these effects 
are lagged by 1 year, 2 years, etc. Last, our approach does not re-
quire us to hypothesize that one particular leader is better than an-
other. For the purposes of this study, we are agnostic about which 
leaders are better. We test whether some leaders are different from 
others in ways that matter for various outcomes of interest.

Our method is not robust to endogenous turnover decisions in 
the absence of leader effects. To see the issue, suppose that leaders 
do not matter for the outcome in question but voters or employers 
behave as if they do, retaining leaders after good outcomes but re-
placing them after bad outcomes. This behavior would be a source 
of bias for RIFLE and other methods of estimating leader effects. To 
address this issue, we estimate the actual relationship between per-
formance and turnover for politicians, CEOs, and coaches. We then 
provide simulations showing that the bias due to endogenous turn-
over is likely to be small in the settings we study. The same approach 
can be used to evaluate the extent to which endogenous turnover is 
a source of bias in other settings.

RIFLE is a general, flexible method that can be applied to any 
setting with an objective outcome of interest and leaders who serve 
different periods of time. We have developed a Stata package that 
will allow future researchers to easily apply this method to many 
different contexts and outcomes to better understand where, when, 
and why leaders matter. The package can be downloaded by typing 
“ssc install rifle” within Stata.

RIFLE relates to methods used in other papers that rely on leader 
fixed effects in one way or another to study political leaders (9), 
CEOs [e.g., (18)], and even teachers (19). These studies typically use 
parametric inferential strategies that, as we show, tend to produce 
misleading results, but our approach to inference is different. We 
do not assume that the r2 statistic, or a related summary of fit, from 
a set of leader-specific fixed effects will be zero when leaders do not 
actually affect the outcome. Because of random noise in the data, 
serial correlation, and unit-specific trends, leader fixed effects will 
increase the r2 even when leaders do not matter. Using the adjusted 
r2, as Bertrand and Schoar (18) do, partially accounts for the prob-
lem of overfitting to random noise, but it does not address time 
trends and serial correlation. Fitza (10) points out that previous 
studies overestimate leader effects by fitting random noise and pro-
poses that researchers correct for this by conducting a placebo 
test with randomly generated outcome data. While this approach 
is useful, it also does not correct for time trends or serial correla-

tion. RIFLE accounts for these factors without requiring additional 
assumptions about the nature of the serial correlation or the unit- 
level trends. In this sense, our approach is more conservative and will 
be less prone to detecting leader effects in cases where there are none.

A preview of one of our results illustrates the idea that the r2 
or adjusted r2 statistics alone are insufficient for assessing leader 
effects. In a subsequent analysis, we test whether U.S. mayors affect 
changes in employment in their cities. When we randomly permute 
the terms of service for mayors, there should be no leader effects 
in these permuted datasets because terms of service are random. 
Nonetheless, the average r2 statistic from our random permutations 
in this setting is 0.606, meaning 61% of the variation in employ-
ment across cities appears to be explained by leader fixed effects, 
although the leader variables correspond to random time intervals. 
The adjusted r2, which is designed to mitigate overfitting, is still 
0.525. If we first demean by city, then the r2 and adjusted r2 statistics 
are 0.343 and 0.209, respectively. None of these statistics can sepa-
rate leader effects from other forces because the numbers are large 
even when there are no leader effects. Whenever there is serial cor-
relation in the outcome or there are unit-specific time trends unre-
lated to leaders, we would expect a large r2 statistics regardless of 
whether leaders matter. As we will see, although the r2 and adjusted 
r2 statistics are large when we regress city employment on mayor 
fixed effects, RIFLE shows that they are no larger than we would 
expect by chance if mayors do not affect employment.

RIFLE also offers some advantages relative to the method of 
Jones and Olken (6). They use a similarly nonparametric inferential 
approach, comparing the changes in economic growth in periods 
with leadership transitions to the distribution of changes in periods 
when there are no transitions. However, their analysis only includes 
leader transitions arising from unexpected deaths, i.e., those due to 
an accident or illness in office. While unexpected deaths provide 
plausibly exogenous changes in leadership, identification comes from 
a relatively small number of leader transitions. Specifically, they 
have only 57 such unexpected transitions from a panel of 130 coun-
tries since 1945. Our approach provides more statistical precision 
using more data.

One concern with focusing on unexpected leader transitions is 
that the results may reflect the disruptive effects of an unanticipated 
transition of power. To the extent that unexpectedly changing lead-
ers disrupts the government or economy, this will be reflected in 
estimates of leader effects using this strategy. While Jones and Olken (6) 
take measures to reduce the possibility that disruption contaminates 
their results, such as excluding the first year or two years after the 
transition, some concerns remain. Besley et al. (7) show that the 
average change in growth following an unexpected leader transition 
is negative. In particular, they show that there is a 0.2–percentage 
point reduction in annual growth during the 5 years after an unex-
pected transition in leadership. Unless there are disruptive effects, 
it is hard to see why the average effect of random leader transitions 
should be predictability negative.

RIFLE also offers practical advantages in terms of its generaliz-
ability. The method of Jones and Olken (6) requires identifying not 
only leader transitions due to death in office but also knowledge of 
the cause of the leader’s death. While uncovering such information 
may be feasible for world leaders, it may be impractical or impossi-
ble in the case of other leaders serving in less prominent positions. 
Even for the large U.S. cities that we study in this paper, we some-
times had difficulty finding the names of the mayors who served in 
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the past. We suspect that finding detailed information about their 
cause of death would require heroic effort. Furthermore, there are 
many settings for which unexpected deaths in office are extremely 
rare. Fortunately, our method does not require additional informa-
tion beyond the leaders’ terms of service and so should be more 
applicable to studying a wide range of leaders.

We also note some limitations of our method, which are shared 
with others in the literature. We can think of our approach as test-
ing the null hypothesis that all leaders are equal with respect to a 
particular outcome of interest. We conclude that leaders matter when 
we can reject the hypothesis that all leaders are equal. One reason 
that we might fail to reject the null is if selection reduces the varia-
tion among those who become leaders. For instance, electoral com-
petition or rigorous hiring practices may result in only high-quality 
leaders serving. If these leaders perform equally well, then there will 
be no leader effects according to our definition. However, such a 
null finding would not imply that replacing a sitting leader with a 
random person would have no effects. Furthermore, simply reject-
ing the null might not be particularly interesting in some cases. As 
with many other examples of hypothesis testing, we might put little 
probability mass on the null; of course, some leaders are different 
from others. However, as we discuss below, we can also use this 
method to say something about substantive effect sizes and assess 
the extent of variation attributable to leader effects. Last, as noted 
above, RIFLE will be biased when leaders do not matter but voters 
or employers behave as if they do, a phenomenon we label endoge-
nous turnover.

Some empirical studies ask about the effects of selecting one type 
of leader or another. For example, in the context of U.S. mayors, 
there are studies on the effect of Democrats versus Republicans 
(20–22), females versus males (23), and black versus nonblack may-
ors (24). These kinds of studies can, in principle, demonstrate that 
leaders matter and they can further explore which dimensions of 
leaders’ characteristics or backgrounds matter most for particular 
outcomes. However, this literature has produced a lot of null re-
sults, and even when results are not null, we might worry that many 
hypotheses were tested across many characteristics of leaders and 
many outcomes, leading us to wonder whether and how much vari-
ation in leaders really matters for a particular outcome of interest. 
In these cases, a more general test of leader effects is warranted. We 
see our method as a complement to (but not a replacement for) 
design-based studies of the effects of particular kinds of leaders. 
Iteration and interplay between our general test of leader effects and 
more specific testing of particular dimensions of leadership could 
be particularly fruitful in settings where leader effects have previ-
ously been elusive.

To assess the properties of RIFLE, we have conducted a series of 
Monte Carlo simulations. First, we show that if leaders and outcomes 
are not related, then we will not detect leader effects. Under the null 
hypothesis, P values should be uniformly distributed between 0 and 1, 
and this is exactly what we find. We simulate datasets with a certain 
number of units and time periods. For our initial simulations, we 
assume that each leader’s tenure is randomly drawn uniformly from 
integers between 1 and 5. We simulate an extra five periods for each 
unit and remove the first five periods. This ensures that the simulat-
ed dataset starts in the middle of some leaders’ tenures, making the 
simulations more similar to our subsequent analyses with real data. 
The outcome in the first period is drawn independently from a 
standard normal distribution, and the outcome in each subsequent 

period is a weighted average of the outcome in the previous period 
and a new draw from a standard normal distribution. This means 
that there is random variation in the outcome from year to year and 
there is also serial correlation over time within each unit, but the 
outcome is unrelated to leaders.

In Fig. 1, we present results from simulations with 20 units and 
20 periods per unit, although results are similar even when we have 
as few as 5 units and 5 periods. We vary the extent of serial correla-
tion in the data by varying the weight of the previous period’s outcome 
in the current period’s outcome, and we show results for weights of 
0, i.e., no serial correlation, and 0.2, i.e., modest serial correlation. 
For each level of serial correlation, we simulate 1000 datasets and 
implement RIFLE. Furthermore, to compare RIFLE to a more stan-
dard method, we also implement an F test of joint significance after 
running a regression of the outcome on leader fixed effects.

The top row of Fig. 1 shows the results of the F tests, and the 
bottom row shows the results of RIFLE. When there is no serial cor-
relation, both RIFLE and the F test perform well, producing a uni-
form distribution of P values as we should expect when there are no 
leader effects. When we introduce serial correlation, however, 
RIFLE continues to perform well, while the F test markedly over- 
rejects the null. These simulations confirm that random noise and 
serial correlation do not contaminate the results of RIFLE as they do 
for more standard methods. Furthermore, our P values are reliable 
even with a small number of units and periods. In addition, notice 
that our procedure never requires the researcher to specify the na-
ture of serial correlation in the data. If growth is unrelated to lead-
ers’ tenures, then our test will not wrongly detect leader effects.

What if all leaders are equally able but there is a transition cost 
associated with political turnover? This is an important question 
because transition costs are a key concern for the methodology of 
Jones and Olken (6). Because they focus on periods right around a 
political transition, these transition costs could lead them to over-
state leader effects. To assess the effect of transition costs for our 
method and that of Jones and Olken (6), we implement another 
battery of Monte Carlo simulations, shown in the Supplementary 
Materials. As expected, transition costs strongly bias the test of Jones 
and Olken (6) test against the null, while the implications of transition 
costs for RIFLE are much smaller. For transition costs to meaning-
fully bias our approach, these costs have to be very large, and in 
these cases, the bias is in the opposite direction, meaning that we 
under- reject the null. While transition costs would produce a false 
positive with the methodology of Jones and Olken (6), they lead our 
test to be conservative. The intuition is that every leader experiences 
exactly one transition cost during their tenure, so the estimated 
leader coefficients end up being similar in the real data and the r2 is 
low. When we randomly permute the leader’s tenures but keep the 
outcome data the same, some leaders end up with multiple transi-
tion costs in their tenure, and others have none, which spreads out 
the estimated leader coefficients and increases the r2. However, again, 
for reasonably sized transition costs, the implications for our test 
are minimal.

We have seen that RIFLE performs reasonably well when there 
are no leader effects. However, if there are genuine leader effects, 
then will it reliably detect them? The value of our method will be 
limited if there is not sufficient statistical power to detect meaningful 
effects when they do exist. Without having any specific hypotheses 
about which leaders are better, we do not know how we could 
achieve greater statistical power without over-rejecting under the 
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null. As an example, our test should provide more power than that 
of Jones and Olken (6) because instead of using only data from years 
around exogenous transitions, we are using all years and all leaders 
where data are available. Furthermore, the r2 is an efficient statistic 
for our purposes because it implicitly puts more weight on the lead-
er coefficients that are more precisely estimated, i.e., where there 
are more periods per leader. We have also explored alternative sta-
tistics such as the SD of the estimated leader coefficients, but 
these statistics are less efficient than the r2 because many of those 
coefficients are imprecisely estimated. That is, we have designed our 
test with the goal of obtaining reliable P values while also maximiz-
ing statistical power.

In Fig. 2, we show the results of Monte Carlo simulations de-
signed to explicitly assess the statistical power of our approach in 
different datasets. For each of the datasets that we subsequently an-
alyze, we run simulations in which we replace the actual outcomes 
with simulated data with known leader effects. Specifically, for each 
simulated dataset, we generate a random variable from a standard 
normal distribution for each leader that indicates their individual 
effect. Then, for each observation in the dataset, the outcome is 
simulated as random noise, drawn from a standard normal dis-
tribution, plus the leader effect that is multiplied by a number, 
which corresponds to a particular magnitude of leader effects. 
For instance, when the leader effects are multiplied by one-ninth, 
this means that leader effects explain 1/10 of the variation in the 
outcome variable. For each simulated dataset, we generate 19 per-
mutations, corresponding to 20 different possible P values, and 
we record whether the P value is less than 0.05. Then, for each 
magnitude, we repeat this procedure 100 times and record how 
often we reject the null. Figure 2 plots the results of these simu-
lations for all settings and for magnitudes of 0, 0.05, 0.1, 0.15, 0.2, 
and 0.3.

As expected, when there are no leader effects, our test rejects the 
null about 5% of the time, as it should. When leader effects are 
small, say 5% of the variation in the outcome, our test will not reli-
ably detect them in these settings. However, once leader effects in-
crease to 15%, our test reliably detects them in most settings. In 
addition, if leader effects explain 25% of the variation in the out-
come or more, then our test is virtually guaranteed to reject the null 
in all of our datasets. As expected, our power varies depending on 
the amount of data available. We have the most statistical power for 
our data on college basketball coaches, and we have less power for 
National Hockey League (NHL) coaches, National Basketball Asso-
ciation (NBA) coaches, and U.S. mayors.

Fig. 1. Monte Carlo simulations with random noise, serial correlation, but no leader effects. Each histogram shows the distribution of P values resulting from 1000 
simulated datasets with serial correlation (SC) of different magnitudes. The top row presents results from a standard F test, and the bottom row presents tests using RIFLE.

Fig. 2. Statistical power across settings. The figure shows the simulated probabil
ity of rejecting the null for different effect sizes for each of the settings analyzed. 
CBB, college basketball; CFB, college football. 
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If our test does lead us to reject the null, then we have evidence 
that leaders matter, but that alone tells us nothing about the sub-
stantive size of leader effects. For many questions in the social sci-
ences, including this one, our prior beliefs put little mass on the null 
hypothesis that an effect is exactly zero, and we care more about 
substantive significance than statistical significance (25). As we have 
discussed, the r2 statistic itself is not substantively interpretable. It 
tells us the proportion of variation in the data apparently explained 
by leader fixed effects, but that number includes leader effects 
plus unit-specific time trends and the overfitting of random noise. 
However, the difference between the real r2 and the average of the 
permuted r2 statistics should increase with leader effects, so that 
difference should be useful for interpreting effect sizes. Even that 
number, however, does not have a direct substantive interpretation. 
One reason is that genuine leader effects should increase both 
the real r2 and the permuted r2, although they should increase the 
former more than the latter. Therefore, if r2 were greater in the 
real data than in the permuted data and one interpreted that dif-
ference as the proportion of variation attributable to leader effects, 
then they would understate the true effect. Therefore, to say more 
about effect sizes, we recorded this difference from the power simu-
lations above.

Figure 3 shows the average difference between the real and per-
muted r2 statistics for each of the settings in our subsequent analy-
ses and for different magnitudes of leader effects ranging from 0 to 
30%. As expected, there is not a one-to-one relationship between 
the difference in r2 and the actual proportion of variation attribut-
able to leader effects. Instead, the relationship is nonlinear, and, as 
expected, the average slope is less than 1. The color coding is the 
same as in Fig. 2, and we see that the slope tends to be lower when 
statistical power is lower. These simulation results, in conjunction 
with our actual results using real data, can be used to assess effect 
sizes. For example, suppose that when we analyze the effects of U.S. 
mayors on employment, examining data from 1970 to 2015, we ob-
tain an r2 that is 0.01 greater than the average r2 from the random 
permutations, which would imply that mayor effects explain more 
than 15% of the within-city variation in employment. For any sub-
sequent results that do imply leader effects, we can use this approach 
to interpreting the substantive size of those effects.

For our results below, whenever we obtain a positive difference 
between the real r2 and the permuted r2, we will estimate the effect 
size most consistent with the observed difference using linear inter-
polation. Specifically, we will use the simulation results shown in 
Fig. 3, determine the interval of true effect sizes where we would 
expect an observed difference of this magnitude, run a linear regres-
sion of effect size on the difference in r2 for the two data points 
flanking that interval, and then compute the predicted value for 
the actual observed difference. This number can be interpreted as 
a rough estimate of the proportion of variation attributable to varia-
tion in leader abilities, and it is reported in the “prop” column of 
our results tables below.

What if leaders do not matter for a particular outcome but their 
terms of service are influenced by that outcome, perhaps because 
voters or employers believe leaders matter? In general, when leaders’ 
chances of being replaced are influenced by the outcome of interest, 
this poses a problem for our test, and the bias can go in either direc-
tion. We refer to such a phenomenon as endogenous turnover, and 
we explore its implications for RIFLE with a theoretical model in 
the Supplementary Materials. To assess its empirical implications in 

the settings we study in this paper, we conduct two related analyses. 
First, we examine the actual degree of endogenous turnover by re-
gressing leader turnover against lagged outcomes in each of our set-
tings. Second, we run Monte Carlo simulations to evaluate the amount 
and direction of bias given the empirically observed correlation be-
tween turnover and outcomes in each of our settings. The results of 
both analyses are shown in Table 1.

The third column, Avg. turn, shows the average annual rate of 
leader turnover. For instance, the first row of the table shows that, 
on average across our sample, 19% of world leaders turn over each 
year. This rate varies across settings. For example, the turnover rate 
of world leaders is notably lower in autocracies (5.5%) than in 
democracies (27%). CEOs tend to have long tenures with an average 
annual turnover rate of only 11%, and on the other end of the spec-
trum, more than a third of NHL coaches (36%) are replaced each 
year, on average.

The next column, Slope, reports the coefficient from a regression 
of the turnover dummy against the outcome lagged by 1 year. The 
outcome variables are standardized so that the coefficient can be 
interpreted as the change in turnover probability associated with a 
one-SD change in the outcome. All of the regressions include unit 
and year fixed effects. The column, r2 reports the increase in the r2 
of the regression that comes from adding the lagged outcome vari-
able, relative to a baseline model including only unit and time fixed 
effects. This can be interpreted as the proportion of within- unit vari-
ance in leader turnover that is explained by the outcome.

To illustrate, the first row shows that, for all world leaders, a one-
SD increase in economic growth is associated with a 2.4–percentage 
point reduction in the probability of leader turnover in the follow-
ing year. Relative to the baseline turnover rate of 19%, this suggests 
that a one-SD increase in economic growth reduces the probability 
of leader replacement by about 12.5%. The r2 column shows that 
adding the outcome variable to the turnover regression increases 
the r2 by only 0.003, relative to the model with only unit and time 
fixed effects. For autocracies, the estimated slope and r2 are even 
smaller.

Looking across the other settings and outcomes, we find that 
turnover for governors, mayors, and CEOs is only weakly related to 

Fig. 3. Interpreting effects sizes across settings. The figure plots the expected r2 
minus the average permuted r2 for different effect sizes and settings. We later use 
these simulation results to assess substantive effect sizes.
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Table 1. Simulated FRR with endogenous turnover. FRR, false rejection rate; SG&A, selling, general, and administrative expense; ROA, return on assets. 

Setting Outcome/sample Avg. turn Slope r2 Serial correlation FRR

World leaders

All 0.192 −0.024 0.003 0.215 0.055

Autocracies 0.055 −0.006 0.001 0.295 0.035

Democracies 0.269 −0.027 0.003 0.329 0.045

Transitional 0.196 −0.028 0.004 0.152 0.035

Governors

Income 0.200 −0.003 0.000 −0.178 0.050

Employment 0.200 −0.003 0.000 0.656 0.040

Revenue 0.200 0.009 0.000 −0.094 0.055

Expenditures 0.200 −0.003 0.000 −0.004 0.035

Federal aid 0.200 0.016 0.001 −0.229 0.060

Property crime 0.200 −0.012 0.000 −0.026 0.050

Violent crime 0.200 −0.015 0.001 −0.053 0.035

Mayors

Income 0.163 −0.003 0.000 0.151 0.060

Employment 0.163 −0.004 0.000 0.719 0.060

Public employment 0.163 −0.005 0.000 −0.064 0.070

Public salary 0.163 0.005 0.000 −0.253 0.070

Property crime 0.163 0.007 0.000 −0.022 0.060

Violent crime 0.163 0.007 0.000 −0.017 0.060

CEOs

Cash flow 0.114 0.008 0.000 0.825 0.050

Investment 0.114 −0.005 0.000 0.800 0.055

Cash holdings 0.114 0.003 0.000 0.855 0.050

Interest coverage 0.114 −0.002 0.000 0.238 0.045

Leverage 0.114 0.002 0.000 0.033 0.035

Advertising 0.114 −0.015 0.000 0.944 0.035

SG&A 0.114 0.005 0.000 0.122 0.040

ROA 0.114 −0.005 0.000 0.171 0.035

Operating ROA 0.114 −0.015 0.001 0.687 0.055

MLB

Scored 0.313 −0.094 0.038 0.456 0.065

Allowed 0.313 0.097 0.038 0.382 0.055

Margin 0.313 −0.124 0.063 0.476 0.080

Win 0.313 −0.130 0.074 0.502 0.080

NFL

Scored 0.241 −0.107 0.060 0.442 0.055

Allowed 0.241 0.089 0.041 0.346 0.055

Margin 0.241 −0.120 0.075 0.457 0.055

Win 0.241 −0.133 0.092 0.416 0.045

CFB

Scored 0.226 −0.059 0.019 0.434 0.045

Allowed 0.226 0.063 0.021 0.429 0.060

Margin 0.226 −0.071 0.028 0.505 0.060

Win 0.226 −0.071 0.028 0.417 0.065

NBA

Scored 0.306 −0.033 0.005 0.531 0.030

Allowed 0.306 0.102 0.049 0.565 0.085

Margin 0.306 −0.131 0.080 0.621 0.045

Win 0.306 −0.134 0.085 0.603 0.060

continued on next page
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the outcome variables under consideration. The change in r2 is effec-
tively zero in all cases and the estimated coefficients are generally 
below 1 percentage point.

Endogenous turnover appears to be much more robust among 
sports coaches. Across all the sports we study, all of the coefficients 
are statistically significant and in the expected direction. The num-
ber of wins in a season, in particular, is a reliable predictor of coach 
turnover. One potential explanation for the extent of endogenous 
turnover in this setting is that sports coaches can essentially be fired 
at any time, while in many political systems, for example, there are 
only occasional, discrete opportunities to replace a leader. In the 
National Football League (NFL), for example, a one-SD increase in 
wins is associated with a 13–percentage point reduction in the 
probability of coach replacement in the following year. Relative to 
the baseline turnover rate of 24%, this represents a 54% reduction. 
Adding last-season wins boosts the r2 of the regression by 0.09. 
Most of the other sports yield similar results, although endogenous 
turnover is weaker in college basketball.

We suspect that the stronger connection between outcomes and 
turnover in sports, compared to business and government, is due to 
the clarity of the leaders’ objectives. Coaches are, above all, respon-
sible for winning games, whereas political leaders have multifaceted 
responsibilities, any one of which in isolation may play only a limited 
role in voters’ evaluation of the incumbent.

That we find evidence of only weak endogenous turnover in pol-
itics may appear counter to conventional wisdom about the importance 
of the economy in influencing elections, a phenomenon dubbed 
economic voting [e.g., (26)]. However, it bears emphasizing that even 
in standard economic voting models, the r2 attributable to gross 
domestic product (GDP) growth is not especially high. For instance, 
in the United States, a regression of incumbent party presidential vote 
share against GDP growth delivers an r2 of 0.23 in our study period 
(27). Moreover, standard models use vote share as the dependent 
variable, which is measured only in election years. We use leader 
turnover as the dependent variable and include all years. However, 
strong the correlation may be in election years, it is essentially con-
strained to be zero in nonelection years, which limits the extent of 
endogenous turnover, at least in democracies. Moreover, term limits 
create leader transitions unrelated to economic performance, further 
weakening the possible extent of endogenous turnover in practice.

Overall, we find relatively little evidence of endogenous turnover, 
except in sports. To further assess the implications of endogenous 
turnover for our substantive applications, we have conducted sepa-
rate Monte Carlo simulations for each kind of leader and each out-
come examined in our study. We start with the actual datasets used 

to generate our main results, keeping the number of time periods 
and units as they are. We simulate the outcome of interest and the 
leader identifiers according to a known process. Specifically, the 
outcome is drawn from a normal distribution irrespective of leaders 
but with serial correlation. We estimate the actual amount of serial 
correlation in each setting by regressing the outcome at time t against 
the outcome at time t – 1. The coefficients from these regressions 
are listed in the column, Serial corr., in Table 1. In our simulations, 
the outcome in each period is a weighted combination of the out-
come in the previous period and a new random draw. The weight 
given to previous performance is based on the actual serial correla-
tion of outcomes observed for the setting in question.

Although leaders do not matter in these simulations, leader 
turnover is probabilistically affected by the outcome in the preceding 
period. We set the average probability of turnover in each period 
equal to the average turnover propensity in the data (column Avg. 
turn in Table 1). We also allow the probability of turnover to vary 
according to the degree of endogenous turnover observed in the 
data. Specifically, we apply the coefficient from the Slope column of 
Table 1 to the simulated data. For example, in the world leader sim-
ulation, the simulated outcome data are multiplied by the coefficient 
of −0.024, meaning that when the outcome is one SD above average, 
the leader is 2.4 percentage points more likely to be retained. We use 
the actual coefficient from each setting in its corresponding simulation, 
so the extent of endogenous turnover in our simulations is determined 
by the actual extent of endogenous turnover in each setting.

Using these simulated datasets, we implement RIFLE to see if we 
reject the null hypothesis (i.e., P < 0.05) when there is endogenous 
turnover. We repeat this many times to estimate the false rejection 
rate (FRR) of our method assuming no leader effects but allowing 
for the level of endogenous turnover observed in that setting. Ideally, 
we would obtain an FRR of 0.05, and to the extent that our results 
deviate from that, we can learn the extent to which endogenous 
turnover leads us to over- or under-reject the null.

The column FRR in Table 1 reports the FRR for each setting. 
According to our Monte Carlo simulations, the rates are generally 
close to the ideal of 0.05. The highest FRR we observe is for points 
allowed in the NBA, where the FRR is 0.085. These results suggest 
that the endogenous turnover of leaders, to the extent actually ob-
served in these settings, does not meaningfully bias our results.

The methodology of RIFLE is reasonably flexible and can be ex-
tended or modified in a number of ways. Suppose, for example, that 
a researcher has additional covariates and would like to use those in 
her analyses. We can think of several reasons to do this. One potential 
benefit of additional covariates would be statistical precision. If we 

Setting Outcome/sample Avg. turn Slope r2 Serial correlation FRR

CBB

Scored 0.156 −0.020 0.003 0.489 0.055

Allowed 0.156 0.036 0.009 0.534 0.035

Margin 0.156 −0.050 0.018 0.533 0.060

Win 0.156 −0.052 0.019 0.464 0.065

NHL

Scored 0.364 −0.088 0.033 0.498 0.070

Allowed 0.364 0.134 0.076 0.507 0.040

Margin 0.364 −0.141 0.085 0.578 0.070

Win 0.364 −0.145 0.089 0.543 0.065
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have covariates that explain a lot of variation in the outcome of in-
terest but are otherwise unrelated to leaders, then we could partial 
out the effects of these covariates in the preprocessing stage to improve 
statistical power. We recommend regressing the outcome on time 
fixed effects and these covariates, calculating the residuals, and then 
using these residuals as the outcome in the subsequent regressions.

Another common situation is one in which we have a hypothesis 
about variation in leader effects. Suppose, for example, that we ex-
pect leader effects to be greater in autocracies than democracies. 
The simplest way to proceed is to separately implement RIFLE for 
autocratic and democratic countries. If a country switches back and 
forth between autocracy and democracy, then there are several dif-
ferent ways to proceed. A researcher could split up the data within a 
unit, although this will often sacrifice power because identification 
comes from more leaders serving different periods of time. In our 
subsequent analyses of world leaders, we separately analyze auto-
cracies, democracies, and countries that switch during our period of 
analysis.

A third motivation for using covariates involves delving into 
specific mechanisms and asking more subtle questions about the 
nature of leader effects. For example, in our subsequent analyses 
of U.S. governors, we find meaningful effects on public finance out-
comes. A natural next question is whether these differences are 
explained by differences between Democratic and Republican pri-
orities or if there are still meaningful differences between governors 
of the same party and from the same state. As before, a researcher 
could partial out the effects of a leader-specific covariate, such as 
party, in the preprocessing stage, although the effect in this case is 
changing the quantity being estimated rather than improving statis-
tical power. Briefly, the same motivations for preprocessing and sub-
setting data in other settings can be imported to this setting as well.

RESULTS
To demonstrate the substantive value of RIFLE, we estimate leader 
effects in several different settings and for several outcomes. We start 
with an analysis of world leaders and economic growth, a setting 
that has been rigorously studied previously, allowing us to bench-
mark our estimates against those from previous methods. Since 
Jones and Olken (6) already provide credible estimates of leader 
effects in this setting, with the small caveat that transition costs 
could potentially bias their estimates, it would be reassuring for us 
to recover similar estimates using RIFLE.

We use data on world leaders from Archigos (28) version 4.1. 
We use data on GDP by country and year from the Maddison Project 
(29). In this and all subsequent applications, our data indicate the 
identity of the leader holding each leadership position in each year. 
In cases where multiple leaders served in the same position in the 
same year, we record which leader held the position for the greatest 
portion of that year. We also code all outcomes of interest as pro-
portionate growth from the previous year. This likely improves 
statistical power because we would expect good leaders to achieve 
better-than-average growth in the outcome of interest rather than 
immediately shifting the outcome to a different level, although there 
might be some substantive settings where a researcher will want to 
code the outcome as a level rather than a change.

Following the methodology described above, we analyze the ef-
fects of world leaders by regressing GDP growth, after demeaning 
the data by year, on a set of leader dummies. As shown in Table 2, 

the r2 from this regression is 0.275, and the average r2 from the per-
muted regressions is 0.244. The estimated P value from 1000 differ-
ent permutations is 0.003, meaning that the r2 from the real data 
was larger than the r2 statistics from all but 3 of the 1000 permuted 
datasets. The difference between the real r2 and the average permu-
tation of 0.031 implies that about 24% of the variation in economic 
growth within countries is attributable to variation in national leaders. 
In our dataset, the SD of growth, demeaned by country and year, 
is 6.0%. Therefore, as a country switches from an average leader to 
one that is one SD above the mean, they can expect GDP growth to 
be about 1.5 percentage points higher than normal. This is a sub-
stantively meaning number, and it is nearly identical to the substan-
tive size of leader effects implied by the results of Jones and Olken 
[(6), p. 837].

We next estimate leader effects separately for democracies and 
autocracies, as classified by the Polity IV scores. Jones and Olken (6) 
classify countries according to their status at the time of a leader 
transition. Easterly and Pennings (9), on the other hand, classify 
countries according to their average scores over time. We divide 
countries into three categories—those that were always democracies, 
those that were always autocracies, and those that changed their sta-
tus at least once over the period of study. Twenty-nine countries in 
our data were always autocracies, 35 were always democracies, and 
89 transitioned at some point. We implement our method separately 
for each subset.

We find some evidence of leader effects in autocracies (P = 0.053), 
strong evidence of leader effects in transitional countries (P = 0.006), 
and little evidence in democracies (P = 0.506). We should not nec-
essarily conclude that leaders matter more in transitional countries 
than autocracies, since we have more statistical power in the latter 
sample. The implied substantive sizes of leader effects are similar 
across both samples. For autocracies, the difference of 0.027 suggests 
that leader effects explain about 23% of variation in growth, and 
since the SD of within-country growth in autocracies is 7.4%, this 
implies that a leader who is one SD above the mean will increase 
GDP growth by about 2 percentage points more than an average 
leader. For transitional countries, the difference of 0.038 suggests 
that leader effects explain 26% of the variation in economic growth, 
and since the SD of within-country growth in transitional countries 
is 5.9%, this implies that a leader who is one SD above the mean will 
increase GDP growth by about 1.5%. Like Easterly and Pennings (9) 
but unlike Jones and Olken (6), we find that leader effects are not 
limited to autocratic nations, but the implied effect sizes are slightly 
larger for autocracies than transitional countries. Like Jones and 
Olken (6) but unlike Easterly and Pennings (9), we find little evidence 
for leader effects in democracies.

One potential interpretation of these results is that democracies more 
consistently select high-quality leaders, meaning that the differenc-
es between leaders are less meaningful. This is different from saying 
that the effect of a good leader is smaller in democracies. It could be 
that leadership matters in democracies, but good institutions make 
the differences between the leaders selected in equilibrium smaller. 
Regardless of the interpretation, we are reassured that RIFLE largely 
recovers the most credible existing estimates in the literature.

Also in Table 2, we extend our analysis to U.S. governors follow-
ing the same basic methodology. In addition to analyzing economic 
outcomes, we also test for governor effects on public finance and 
crime. Data on U.S. state-level income per capita and employment 
come from the Regional Economic Information System (REIS) of 

 on January 26, 2021
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


Berry and Fowler, Sci. Adv. 2021; 7 : eabe3404     20 January 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

11 of 16

Bureau of Economic Analysis. Data on state-level per capita property 
crime and violent crime come from the Federal Bureau of Investiga-
tion’s Uniform Crime Reporting Program, and public finance data 
on state-level revenues and expenditures come from the U.S. Census 
Bureau’s Census of Governments and Annual Surveys of Local Gov-
ernment Finances.

Our state-level economic data start in 1930 for personal income 
and in 1970 for employment. While these panels are shorter than 
those for world leaders, our power simulations suggest that we can 
still detect meaningful leader effects if they are present. However, 
there is little evidence of governor effects on income or employment.

Although we find no evidence that governors matter for aggre-
gate economic outcomes, perhaps, governors differ in their use of 
various policy levers. To test for this, we examine state revenue ex-
cluding federal aid, state expenditures, and aid from the federal gov-
ernment to states from 1951 to 2008. Perhaps, some governors are 
better than others at securing federal aid, and perhaps, they raise 
and spend different amounts of money. We obtain positive point 
estimates for all three of these outcomes, and these estimates are 
statistically significant in the case of revenue and federal aid. The 
estimates imply that 18 to 20% of variation in these public finance 
outcomes can be explained by the abilities and priorities of individual 
governors. Although governors differ in their abilities or appetites 
to raise and spend money, those differences do not appear to trans-
late into differences in state income and employment.

Perhaps, the primary effects of governors are outside the econo-
my, in which case we should shift our focus to outcomes that are 
potentially shaped more directly through state-level actions. Pursuing 
this idea, we next examine the effects of governors on crime rates. 
Using data from 1961 to 2012, we analyze the effects of governors 
on property and violent crime rates. We find statistically significant 
governor effects on property crime rates (P = 0.038) and sugges-

tive effects for violent crime (P = 0.084). The differences between 
the real r2 and the permuted r2 imply that governor effects ex-
plain about 18% of the variation in both property crime and 
violent crime.

To the extent that we detect governor effects for public finance 
and crime, are these effects simply explained by differences between 
Democrats and Republicans? We address this question by remov-
ing the average effects of party before implementing our procedure. 
Specifically, instead of simply demeaning by time, we regress our 
outcomes on state fixed effects, year fixed effects, and an indicator 
for the governor’s party, and we compute the residuals. When we 
do this, the estimated effects of governors on public finance and 
crime are virtually unchanged, suggesting that these effects are not 
explained by average differences between Democrats and Republi-
cans. We estimate little average effect of party on these outcomes, 
suggesting that there must be meaningful variation in governors’ 
abilities and priorities within a given party and state. This exercise 
demonstrates the flexibility of our method and its ability to address 
additional questions and disentangle potential mechanisms driving 
leader effects.

We next study the effects of mayors for similar outcomes. We focus 
on the 100 largest U.S. cities according to 2015 population. For each 
city, we collected data on the names and service dates of mayors dating 
back at least to 1970, when our data on local income and employment 
begin. We have obtained complete data for 70 of the top 100 cities. 
Because annual income and employment estimates are not available 
by city, we match each city to its home county and use county-level 
income and employment data from REIS. We drop the two cities that 
are not the largest in their county (Long Beach, CA and Mesa, AZ). 
We can also weight the regressions according to the city’s share of 
county population, which is allowable within our methodology and 
has no impact on our subsequent results.

Table 2. Results for political leaders. Avg, average permuted r2; Diff, the difference between the real r2 and the average permuted r2; Prop, the estimated 
proportion of the variation in an outcome explained by leader effects. 

Setting Outcome Years r2 Avg Diff P Prop

World leaders: all

GDP 1876–2010

0.275 0.244 0.031 0.003 0.242

Autocracies 0.176 0.149 0.027 0.053 0.227

Democracies 0.389 0.391 −0.002 0.506 0.000

Transitional 0.278 0.240 0.038 0.006 0.263

U.S. governors

Income 1930–2015 0.166 0.154 0.012 0.239 0.158

Employment 1970–2015 0.450 0.501 −0.051 0.998 0.000

Revenue 1951–2008 0.432 0.152 0.280 0.000 0.300

Expenditures 1951–2008 0.206 0.186 0.020 0.069 0.196

Federal aid 1951–2008 0.135 0.120 0.016 0.040 0.177

Property crime 1961–2012 0.182 0.166 0.017 0.038 0.181

Violent crime 1961–2012 0.173 0.157 0.016 0.084 0.177

U.S. mayors

Income 1970–2015 0.174 0.183 −0.010 0.770 0.000

Employment 1970–2015 0.608 0.606 0.002 0.429 0.070

Public 
employment 1970–2010 0.183 0.204 −0.022 0.624 0.000

Public salary 1973–2010 0.098 0.108 −0.010 0.826 0.000

Property crime 1986–2012 0.159 0.164 −0.005 0.718 0.000

Violent crime 1986–2012 0.162 0.166 −0.005 0.690 0.000
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Can mayors reasonably be expected to affect economic growth 
in their cities? The existing literature offers differing perspectives. 
One school of thought argues that Tiebout (30) competition forces 
mayors to single-mindedly pursue economic development (31), 
with some going so far as to argue that cities are governed as “growth 
machines” that pursue development at the expense of all other pri-
orities (32). Others contend that mayors are relatively weak execu-
tives that lack the power to control basic service delivery, much less 
to drive economic growth in their cities (33). We find little evidence 
of mayoral effects on income and employment in their counties, as 
shown in Table 2. In both cases, mayoral fixed effects appear to ex-
plain a substantial amount of the variation in the outcome, but we 
see that the placebo dummies explain just as much, on average. 
Similarly, when we examine public finance data on city employees 
and the average salary of city employees, we continue to find null 
results.

We next turn to an analysis of mayoral effects on crime, an out-
come over which we might expect mayors to have greater influence. 
After all, mayors directly appoint police chiefs and shape law en-
forcement policy within their jurisdictions. Nevertheless, we find no 
evidence that mayors affect either property or violent crime rates in 
their cities. Our results reveal no evidence of mayoral effects for 
some of the most important outcomes in a city—the economy, the 
size of city government, and crime rates. These results are generally 
consistent with the argument that mayors simply lack control over 
governance and service provision within their jurisdictions [e.g., (33)]. 
Furthermore, we continue to obtain similarly null results when we 
focus exclusively on the cities that, according to surveys conducted 
by the International City Management Association, have a mayor- 
council system in which the mayor has more independent authority. 
Our null results, in this case, could be the result of insufficient data, 
but we fail to detect mayor effects even for the outcomes and cities 
where we would most expect them.

We also study CEOs of major U.S. companies between 1970 and 
2015. Following Bertrand and Schoar (18), we obtain data on the 
identity of firm CEOs for 1970 to 1992 from the Forbes 800 files 
provided by K. J. Murphy and for subsequent years from Execucomp. 
We match the CEO data to firm-year outcomes of interest available 
from Compustat. After matching, we have data on the CEOs and 
outcomes of interest for an average of 395 firms each year and a 
total of nearly 600 unique firms over time. We focus on the nine 
outcomes of greatest interest in Bertrand and Schoar (18), and we 
follow their coding practices.

Table 3 shows the results. For all but one of the nine outcomes, 
our estimates are not statistically significant at the 0.05 level. De-
spite having high statistical power, more than for world leaders and 
almost as much as for college football coaches, our results are essen-
tially null. Aside from the single outcome of cash holdings, we find 
no evidence that CEOs affect the performance of their firms.

This result conflicts with much of the existing literature on 
CEOs, although as discussed above, the existing tests of CEO effects 
are prone to false positives because they do not account for serial 
correlation or firm-specific trends. When we use a more reliable 
approach to inference, we find little evidence that variation in 
CEOs explains variation in the success of firms. As discussed in the 
political context, this could be because CEOs do not matter, or it 
could be that firms have effective practices for hiring and incentiv-
izing their CEOs such that, in equilibrium, most CEOs perform 
similarly.

When studying sports coaches, we focus on the high-stakes set-
tings in the United States in which coaches are highly compensated— 
Major League Baseball (MLB), NBA, NHL, NFL, college football, and 
men’s college basketball. All data were provided by Sports Reference 
Inc. The outcome that is most readily observable and arguably 
most important is whether a game is won or last. Furthermore, we 
have data on the scores of each game, so we can also examine points 
scored, points allowed, and the point margin. In some sports, there 
are reasons to think that coaches might have more ability to affect 
points scored versus points allowed, or vice versa, so we separately 
examine both outcomes. For some sports, we have also collected 
additional data and conducted our test on other outcomes of spe-
cific interest for that sport.

We start with a dataset in which each unique game-team com-
bination is an observation. To improve precision, we attempt to 
account for opponent quality and home-field advantage in the fol-
lowing way. For each outcome of interest, we calculate the average 
value for the opposing team across all games that season that were 
not played against the team in question. Then, we run a regression 
of the outcome of interest on these measures of opponent quality, 
year fixed effects, and an indicator for a home versus away game. 
We calculate the residuals from this regression, indicating the per-
formance of each team in each game over above what would be ex-
pected given the year, home field advantage, and quality of their 
opponent. We then calculate the average residual across games for 
each team season, which becomes our outcome of interest for esti-
mating coach effects. Aggregating up to the team season level causes 
little to no loss of information since the coach rarely changes mid- 
season. In the rare cases where this occurs, we assign the person 
who coached the most games that season to the entire season.

Results are shown in Table 4. We start with MLB managers, us-
ing data from 1871 to 2016. We find evidence that MLB managers 
matter for all four outcomes—runs scored, runs allowed, margin of 
victory, and victories—although they appear to matter more for 
runs allowed than for runs scored. For runs scored, the estimate is 
not statistically significant at conventional levels (P = 0.058), and 
the substantive magnitude of the estimated effect is smaller. How-
ever, for runs allowed, the P value is strongly statistically significant 
(P < 0.001) and substantively large, suggesting that managers ex-
plain 28% of the variation within teams and across seasons in runs 
allowed.

One potential explanation for this discrepancy is that managing 
defense in baseball requires more strategic decisions than managing 
offense. For the most part, the job of the manager on offense is to 
put the best hitters in the lineup in the best order, and most manag-
ers would probably make similar decisions with the same team. 
However, on defense, the manager must efficiently use their pitch-
ers without wearing out their arms. Some managers may be better 
than others at determining when a starter has thrown too many 
pitches to be effective, when to use a reliever, and which reliever to 
use in a particular situation.

One common notion is that a big part of an MLB manager’s job 
involves the allocation of scarce resources across games. Each team 
plays 162 games in the regular season, and each pitcher can only 
throw so many pitches per week. Therefore, some might argue that 
the most important job of the manager is not to increase runs scored 
or reduce runs allowed but instead to efficiently allocate runs across 
games. If the outcome of one game is a forgone conclusion, then a 
manager might as well save their best pitchers for the next game. To test 
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whether some managers are better at this than others, we also use 
wasted runs as one of our outcomes of interest. We measure wasted 
runs as the margin of victory when a team wins and the number of 
runs scored when a team loses, and we might expect efficient coaches 
to reduce the number of wasted runs, allowing their teams to win 
more games with the same numbers of runs scored and allowed. We 
find little evidence that managers affect wasted runs. Our estimated 

effect of coaches on wasted runs in substantively small and statistically 
insignificant (detailed results available upon request). One potential 
explanation for this result is that it may not be easy to ex ante predict 
which runs will be wasted or not, and therefore, managers are un-
able to effectively decide when to save their pitchers for the next game.

Because we have so many years of data for the MLB, we have 
separately analyzed different eras, and we do not observe large 

Table 3. Results for CEOs, 1970–2016. Avg, average permuted r2; Diff, the difference between the real r2 and the average permuted r2; Prop, the estimated 
proportion of the variation in an outcome explained by leader effects. 

Outcome r2 Avg Diff P Prop

Cash flow 0.131 0.152 −0.021 0.681 0.000

Investment 0.126 0.136 −0.010 0.734 0.000

Cash holdings 0.169 0.148 0.021 0.030 0.224

Interest coverage 0.269 0.203 0.066 0.129 0.300

Leverage 0.164 0.221 −0.057 0.512 0.000

Advertising 0.177 0.179 −0.002 0.507 0.000

SG&A 0.572 0.253 0.319 0.060 0.300

ROA 0.136 0.147 −0.011 0.411 0.000

Operating ROA 0.147 0.168 −0.021 0.707 0.000

Table 4. Results for sports coaches. Avg, average permuted r2; Diff, the difference between the real r2 and the average permuted r2; Prop, the estimated 
proportion of the variation in an outcome explained by leader effects. 

Setting Outcome r2 Avg Diff P Prop

MLB, 1871–2016

Runs scored 0.360 0.334 0.026 0.058 0.182

Runs allowed 0.431 0.360 0.071 0.000 0.277

Margin of victory 0.440 0.373 0.067 0.000 0.270

Win 0.383 0.328 0.055 0.000 0.249

NFL, 1922–2016

Points scored 0.353 0.327 0.026 0.070 0.193

Points allowed 0.362 0.314 0.048 0.002 0.253

Margin of victory 0.392 0.347 0.045 0.002 0.245

Win 0.350 0.318 0.032 0.015 0.211

CFB, 1900–2016

Points scored 0.360 0.307 0.052 0.000 0.257

Points allowed 0.412 0.335 0.077 0.000 0.300

Margin of victory 0.422 0.349 0.072 0.000 0.294

Win 0.370 0.315 0.055 0.000 0.262

NBA, 1947–2017

Points scored 0.396 0.289 0.107 0.000 0.300

Points allowed 0.387 0.311 0.077 0.000 0.283

Margin of victory 0.422 0.314 0.108 0.000 0.300

Win 0.415 0.315 0.100 0.000 0.300

CBB, 1938–2017

Points scored 0.374 0.269 0.104 0.000 0.300

Points allowed 0.428 0.300 0.128 0.000 0.300

Margin of victory 0.340 0.284 0.056 0.000 0.268

Win 0.301 0.254 0.047 0.000 0.250

NHL, 1918–2017

Goals scored 0.404 0.358 0.046 0.016 0.232

Goals allowed 0.458 0.375 0.083 0.000 0.298

Margin of victory 0.464 0.387 0.077 0.000 0.288

Win 0.432 0.372 0.059 0.004 0.259
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changes over time in the importance of managers. However, we 
have separately analyzed the American and National leagues after 
1973 to see whether the designated hitter rule appears to have 
changed the importance of managers. We find suggestive evidence 
that manager effects are greater in the National League, which did 
not adopt the designated hitter rule, and where a manager must 
make more strategic decisions regarding their batting and pitching 
lineup. However, we do not have enough data to draw statistically 
strong conclusions.

Table 4 also shows the results of our analyses for NFL coaches. 
We look at virtually the entire history of the NFL from 1922 to 2016, 
although the results are similar if we just focus on the modern era. 
As with baseball, we analyze points scored, points allowed, point 
margin, and victories. NFL coaches appear to affect all outcomes, 
although the estimate is statistically stronger and substantively larger 
for points allowed than for points scored.

We also have season-level data for some other outcomes of in-
terest for the NFL during the modern era of 1970 to 2016. Specifi-
cally, we examine fumbles per game, penalties committed per game, 
opponents’ penalties per game, and the proportion of offensive plays 
on which a team passes (detailed results available upon request). 
We find that coaches matter a lot for fumbles and for the penalties 
a team commits. Coach effects explain about 30% of the within-team, 
between-year variation in these variables, with some coaches appar-
ently doing a much better job preventing fumbles and penalties 
than others. Coaches appear to have little effect on penalties com-
mitted by opponents, perhaps revealing that there is not much a 
team can do to systematically induce penalties by their opponents. 
In addition, quite unexpectedly, coaches do not appear to meaning-
fully differ in their use of passing versus rushing. Coaches could 
simply force their teams to pass or run more often, but we do not 
find much evidence that coaches systematically differ from one an-
other on this dimension. Perhaps, most coaches are following the 
same rules of thumb and/or are getting their teams close to the op-
timal share of passing versus rushing.

Table 4 also shows our results for college football coaches from 
1900 to 2016. We include data from all Division 1-A teams after 
1978, when Division 1 was subdivided, and all Division 1 teams be-
fore 1978. The estimated effects are larger for college football than 
for professional football. One potential explanation is that in addi-
tion to managing practices and games, college football coaches also 
play a crucial role in recruiting. Furthermore, because we have so 
much data for college football, the results are extremely statistically 
significant (P < 0.001) for all outcomes.

Next, we study coaches in the NBA and Division 1 men’s college 
basketball, respectively. In both cases, the estimated effects are sub-
stantively quite large. Coaches explain about 30% of the variation in 
points scored and allowed. One initially unexpected result is that in 
college basketball, coaches matter more for points scored and al-
lowed than they do for the point margin. One potential explanation 
is that coaches differ from each other in their preferences for fast- 
versus slow-paced games, with the fast-paced coaches both scoring 
and allowing more points. To explicitly test this hypothesis, we have 
also tested whether coaches matter for the total points scored in the 
game (detailed results available upon request), and here, we detect a 
huge effect, confirming this hypothesis about different coaching 
styles.

Last, Table 4 shows results from NHL coaches from 1918 to 2017. 
As with the other sports, coaches matter and the results are statisti-

cally significant, and as with baseball and football, hockey coaches 
appear to matter more for goals allowed than for goals scored.

DISCUSSION
Our method allows us to estimate the extent to which variation in 
performance is attributable to leaders as opposed to luck and other 
factors outside their control. We think that it is useful to know how 
much leaders matter and for what outcomes they matter most, but 
our method does not allow us to say which leaders are particularly 
effective or ineffective. Analysts and scholars will naturally want to 
know which leaders are most effective, and although our method is 
not suited for answering that question directly, our basic approach 
to inference can be useful for this question as well. Often, however, 
it will be difficult to confidently assess the quality of an individual 
leader. We illustrate this challenge by discussing the effectiveness of 
individual NFL coaches.

Assessing a leader’s ability is especially difficult when we only 
observe that leader serves for a short period of time. For example, if 
an NFL coach has a good record in their first few seasons, then this 
does not provide much information about their quality. Other fac-
tors were likely working in that coach’s favor, and we will expect 
mean reversion in subsequent years. To illustrate this point that the 
best leaders are not necessarily the ones with the best average levels 
of performance, Fig. 4 shows the average residual victory across sea-
sons coached for every coach by team in the history of the NFL. The 
coaches with the best averages tend to be those that only coached 
one or two seasons, just like the coaches with the worst averages 
tend to have only coached one or two seasons. A few coaches have 
averages above 0.25, meaning that they were 25 percentage points 
more likely to win a game than an average coach, conditional on the 
quality of their opponent and home field advantage. This is a re-
markable record. However, nobody who coached more than two 
seasons maintained such a high record. In addition, furthermore, 
even if coaches did not matter, we would probably expect a few 
coaches to have records like this merely by chance.

To identify the coaches that are genuinely likely to be much bet-
ter than average, we would want to look at those who coached more 

Fig. 4. NFL coach performance across seasons coached. The figure plots the 
residualized probability of winning for every NFL coach across the number of sea
sons that they coached. Belichick is shown in red.
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seasons, and we would want to look at those coaches on the upper 
frontier who have impressive records given their number of seasons 
in the league. Some analysts believe that Belichick is one of the 
greatest NFL coaches of all time, and his remarkable tenure with the 
New England Patriots is filled in and colored red in Fig. 4. Through 
the 2016 season for which we have data available, Belichick had 
served 17 seasons with the Patriots, and his average residual victory 
was 0.18. Other coaches have higher averages, but an average that 
high after coaching so many seasons is extremely unusual. Only 
Paul Brown’s 17-year tenure with the Cleveland Browns starting in 
1946 exceeds Belichick’s run.

How can we test whether an outlier like Belichick is genuinely 
great or whether he could have achieved his success by luck? Similar 
in spirit to our previously discussed Monte Carlo simulations, we 
could simulate outcomes in a world in which all coaches are equally 
effective but there is random noise, serial correlation, and endoge-
nous turnover, and we could see how often someone who looks as 
good as Belichick arises. The right question is not the odds that a 
randomly selected coach will look as good as Belichick. Belichick 
might just be the luckiest coach, and we are focusing on him be-
cause of his impressive record. Instead, the right question is about 
the odds that any coach could arise with a record as good as Belichick’s 
even in a world where coaches do not matter.

Using endogenous turnover simulations from Table 1 and using 
the parameters estimated for the NFL, we can compute the average 
performance in their first 17 seasons for all simulated coaches that 
served that long, and we can record the best such average across all 
coaches. We can then compare this to Belichick’s actual perfor-
mance, and we can see how likely such a record is to arise by chance. 
The answer is very unlikely.

The results of this exercise are shown in Fig. 5. If we standardize 
the season-level performance measure, then we see that Belichick’s 
season-level average is one SD above the mean. When we simulate 
10,000 hypothetical NFLs with no coach effects and with serial cor-
relation and endogenous retention comparable to what we observe 
in the real data, there are only five cases in which a coach served 
17 seasons and had such an impressive record. In that sense, we can 
strongly reject the null hypothesis that Belichick is no better than an 
average coach (P = 0.0005).

To illustrate the difficulty of assessing a coach’s quality early in 
their careers, we have conducted the same kinds of simulations but 
only using data from an early point in a coach’s career. The best 
average residual victory for any coach in their first season was 0.412, 
achieved by Adam Walsh who coached the Rams in 1945. In our 
simulations with no coach effects, at least one coach has a first sea-
son as good as this one 62% of the time. The null result for Walsh 
may be informative since he had a lackluster season in 1946 and 
then never coached at the professional level again.

Similarly, the best first two seasons for any coach were achieved 
by George Seifert with the 49ers in 1989 and 1990. In our simula-
tions with no coach effects, at least one coach exceeded Seifert in 
their first two seasons 57% of the time. This might be a false nega-
tive since Seifert won two Super Bowls and only missed the playoffs 
once in his eight seasons with the 49ers. However, as coach of the 
Panthers, Seifert had two lackluster seasons and one atrocious sea-
son before being fired, so we may have been right not to draw over-
ly strong conclusions from two great seasons.

Using a conventional threshold of 0.05 for statistical significance, 
we cannot reject the null hypothesis that any NFL coach is better 

than average if we only use data from their first four seasons. We 
have to wait until they have served five seasons before we are able to 
find statistically significant evidence for any coach. The highest av-
erage by any coach in their first five seasons was achieved by the 
aforementioned Paul Brown, and for him, we obtain a P value of 
0.008 at that point in his career. Sure enough, Brown went on to 
have a long, successful career with Cleveland and Cincinnati, main-
taining a better-than-average record throughout.

Future analysts could adapt this procedure to their setting of in-
terest and apply this logic to determine whether we should be con-
fident that a particular leader is truly effective. The method cannot 
explicitly say which leaders are best, but it can assess which leaders’ 
records are more or less likely to have arisen by chance, which is 
informative for forecasting future success. However, for a democrat-
ically elected leader who might have only served one 4-year term, it 
will typically be difficult to know if their success (or lack thereof) 
was attributable to talent versus luck.

We have proposed a new approach for estimating leader effects— 
RIFLE. The primary innovation relies on random permutations for 
inference. Relative to methods previously used in the literature, ours 
makes use of more variation in the data and relies on fewer and 
weaker assumptions. In Monte Carlo simulations, RIFLE performs 
well even in relatively small samples. In addition, our method does 
not require knowledge of the particular circumstances surrounding 
leader transitions or the cause of leader deaths in office, making our 
approach easier to generalize to subnational or other less prominent 
offices where leader biographies are unlikely to be available.

Consistent with previous evidence, we show that world leaders 
matter for economic growth and they matter more autocracies than 
democracies. Inconsistent with previous evidence, we find little ev-
idence that CEOs matter. We also apply our method to settings 
where leader effects had not previously been estimated. We find 
no evidence that U.S. governors and mayors affect income and 
employment in their jurisdictions. We do find that governors, but 
not mayors, influence public finance in the forms of expenditure 
and federal aid. In addition, we also find some evidence that gover-
nors, but not mayors, affect crime in their jurisdictions. We also 

Fig. 5. Hypothesis test of Belichick’s effectiveness. The figure shows the simu
lated distribution of the career performance of the best coach who served for 
17 seasons in a hypothetical world with no coach effects. Belichick’s actual perform
ance after 17 seasons is indicated by the red line.
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find that strong evidence that sports coaches matter, more so than 
political or business leaders. We hope the application of our meth-
od to different contexts will further improve our general under-
standing of where, when, and why leaders matter.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/4/eabe3404/DC1
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