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The Origins of Scaling in Cities
Luís M. A. Bettencourt

Despite the increasing importance of cities in human societies, our ability to understand them
scientifically and manage them in practice has remained limited. The greatest difficulties to
any scientific approach to cities have resulted from their many interdependent facets, as social,
economic, infrastructural, and spatial complex systems that exist in similar but changing forms
over a huge range of scales. Here, I show how all cities may evolve according to a small set
of basic principles that operate locally. A theoretical framework was developed to predict the
average social, spatial, and infrastructural properties of cities as a set of scaling relations that
apply to all urban systems. Confirmation of these predictions was observed for thousands of
cities worldwide, from many urban systems at different levels of development. Measures of urban
efficiency, capturing the balance between socioeconomic outputs and infrastructural costs,
were shown to be independent of city size and might be a useful means to evaluate urban
planning strategies.

Cities exist, in recognizable but changing
forms, over an enormous range of scales
(1), from small towns with just a few

people to the gigantic metropolis of Tokyo, with
more than 35 million inhabitants. Many parallels
have been suggested between cities and other
complex systems, from river networks (2) and
biological organisms (3–6) to insect colonies
(1, 7) and ecosystems (8). The central flaw of all
these arguments is their emphasis on analogies of

form rather than function, which limit their ability
to help us understand and plan cities.

Recently, our increasing ability to collect and
share data on many aspects of urban life has
begun to supply us with better clues to the prop-
erties of cities, in terms of general statistical pat-
terns of land use, urban infrastructure, and rates
of socioeconomic activity (6, 9–13). These em-
pirical observations have been summarized across
several disciplines, from geography to econom-
ics, in terms of how different urban quantities
(such as the area of roads or wages paid) depend
on city size, usually measured by its popula-
tion, N.

The evidence from many empirical studies
over the past 40 years points to there being no
special size to cities, so that most urban prop-
erties, Y, vary continuously with population size
and are well described mathematically on aver-
age by power-law scaling relations of the form
Y ¼ Y0N b; where Y0 and b are constants in N.
The surprise, perhaps, is that cities of different
sizes do have very different properties. Specif-
ically, one generally observes that rates of so-
cial quantities (such as wages or new inventions)
increase per capita with city size (11, 12) (super-
linear scaling,b ¼ 1þ d > 1; with d ≃ 0:15),
whereas the volume occupied by urban infra-
structure per capita (roads, cables, etc.) decreases
(sublinear scaling, b ¼ 1 − d < 1) (Fig. 1). Thus,
these data summarize familiar expectations that
larger cities are not only more expensive and
congested, but also more exciting and creative
when compared to small towns.

These empirical results also suggest that, de-
spite their apparent complexity, cities may actually
be quite simple: Their average global properties
may be set by just a few key parameters (12, 13).
However, the origin of these observed scaling
relations and an explanation for the interdepen-
dences between spatial, infrastructural, and social
facets of the city have remained a mystery.

Here, I develop a unified and quantitative
framework to understand, at a theoretical level,
how cities operate and how these interdepen-
dencies arise. Consider first the simplest model
of a city with circumscribing land area A and
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Fig. 1. Scaling of urban infrastructure and socioeconomic output. (A)
Total lane miles (volume) of roads in U.S. metropolitan areas (MSAs) in 2006
(blue dots). Data for 415 urban areas were obtained from the Office of Highway
Policy Information from the Federal Highway Administration (14). Lines show
the best fit to a scaling relation Y(N) = Y0Nb(red), with b = 0:849 T 0:038
[95% confidence interval (CI), R2 = 0.65]; the theoretical prediction, b = 5/6
(yellow); and linear scaling b = 1 (black). (B) Gross metropolitan product of
MSAs in 2006 (green dots). Data obtained for 363 MSAs from U.S. Bureau of
Economic Analysis (14). Lines describe best fit (red) to data, b = 1.126 T 0.023
(95% CI, R2 = 0.96); the theoretical prediction, b = 7/6 (yellow); and pro-
portional scaling, b = 1 (black). The two best-fit parameters in each scaling

relation were estimated by means of ordinary least-squares minimization to the
linear relation between logarithmically transformed variables (14). The inset
shows the estimate of G for 313 U.S. MSAs and the conservation law d ln G

d ln N = 0
(R2 = 0:003). G is measured as the product of gross domestic product and
road volume, both per capita. As predicted by the theory, observed values of G
for different cities cluster around its most likely value (mode, yellow line),
which gives an estimate of the optimum G#, and are bounded by the max-
imum Gmax ≃ 8G#(green line); see also Fig. 2B. Several metropolitan areas,
such as Bridgeport, Connecticut (green circle); Riverside, California (yellow circle);
or Brownsville, Texas (red circle), are outliers, suggesting that they are suboptimal
in terms of their transportation efficiency or amount of social mixing.
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population N. I write the interactions between
people i, j in terms of a social network, Fij

k , and
assume that social interactions [e.g., friendship,
employment, acquaintance, etc.] are local, take
place over an interaction area a0 (a cross section
in the language of physics), and have strength
gk, where k describes social link types (14). The
parameters, gk, can be either positive (attractive,
expressing a social benefit, e.g., mutually bene-
ficial economic relations) or negative (repulsive,
expressing a social cost, e.g., crime). All these
processes share the same average underlying
dynamics of social encounters in space and time,
against the background of the city and its infra-
structure networks.

The average number of local interactions per
person is given by the product of the volume
spanned by their movement, a0‘, times the pop-
ulation density n ¼ N=A; where ‘ is the typical
length traveled by people, goods, and informa-
tion (14). The total average social output of a
city can be obtained by multiplying the total
number of interactions by the average outcome
per interaction, g , leading to Y ¼ GN2

A , with the
parameter G ≡ ga0‘ measuring the product of
average social output times area, both per capita
(Fig. 1). Each urban socioeconomic output, Y,
has physical units set by gk, but it is useful to
think of all quantities ultimately expressed in
terms of energy per unit time (power).

Another crucial property of cities is that they
are mixing populations. That is, even if people
in the city explore different locations at different
times, anyone can in principle be reached by any-
one else. This concept, familiar from population
biology (15), is the basis of definitions of functional
cities as metropolitan statistical areas (MSAs), e.g.,
by the U.S. census bureau. In practice, this means
that the cost per person of a mixing population is
proportional to the transverse dimension (diame-
ter), L, of the city L e A1=2: Thus, the total power
spent in transport processes to keep the city mixed
is T ¼ eLN ¼ eA1=2N ; where e is a force per
unit time. This cost must be covered by each in-
dividual’s budget, y ¼ Y=N , requiring y ≃ T/N,
which implies AðNÞ ¼ aNa with a = 2/3 and
a ¼ ðG=eÞa: The baseline area, a, increases with
more productive interactions, e.g., due to economic
growth, and decreasing transportation costs, as is
observed in worldwide patterns of urban sprawl
over time (16). Thus, I obtain Y ¼ Y0N b; where
b ¼ 2 − a ¼ 1þ 1=3 > 1 and Y0 ¼ G1−aea:
This simple model leads to area, A, varying sublin-
early with N (a = 2/3 < 1), and socioeconomic
outputs, Y, varying superlinearly (b = 4/3 > 1).
However, this overestimates b because as cities
grow, space becomes occupied and transporta-
tion of people, goods, and information is chan-
neled into networks. The space created by these
networks gives the correct measure of the social
interactions that can occur in cities.

I propose a more realistic model by generalizing
these ideas in terms of four simple assumptions:

1) Mixing population. The city develops so
that citizens can explore it fully given the re-

sources at their disposal. I formalize this principle
as an entry condition (17), by requiring that the
minimum resources accessible to each urbanite,
Ymin/N ~ GN/A, match the cost of reaching any-
where in the city. Because travel paths need not
be linear, I generalize their geometry via a fractal
dimension, H, so that distance travelled º AH/D

(14). Matching interaction density to costs, I obtain
a generalized area scaling relation, AðNÞ ¼ aNa,
with a as before and a ¼ 2

2þH [a ¼ D
DþH in D

dimensions]. H ¼ 1 allows individuals to fully
explore the city within the smallest distance
traveled, implying that N scales like a physical
volume (14, 18).

2) Incremental network growth. This assump-
tion requires that infrastructure networks develop
gradually to connect people as they join, leading
to decentralized networks (6, 19). Specifically,
the scaling of Fig. 1A is obtained when the av-
erage distance between individuals d = n–1/2 =
(A/N)1/2 equals the average length of infrastruc-
ture network per capita so that the total network
area,AnðNÞ e Nd ¼ A1=2N 1=2:Together with the
first assumption, this implies that An e a1=2N 1−d

with d ¼ 1=6 An ∼½ A1=DN ðD−1Þ=D ¼ a1=DN 1−d,
with d ¼ H

DðDþHÞ in D dimensions'. This has been
observed in U.S. and German road networks
(6, 12, 19) and tracks the average built area of
more than 3600 large cities worldwide (16), mea-
sured through remote sensing.

3) Human effort is bounded, which requires
that G is, on average, independent of N, i.e.,
dG/dN = 0 (Fig. 1B, inset). The increasing
mental and physical effort that growing cities
can demand from their inhabitants has been a
pervasive concern to social scientists (20). Thus,
this assumption is necessary to lift an important
objection to any conceptualization of cities as
scale-invariant systems. Bounded effort is also
observed in urban cell phone communication

networks (21) and is in general a function of hu-
man constraints and urban services and structure.

4) Socioeconomic outputs are proportional to
local social interactions, so thatY ¼ GN 2=An e
N1þd: From this perspective, cities are concen-
trations not just of people, but rather of social
interactions. This point was emphasized by
Jacobs (22, 23), but has been difficult to quantify.
The prediction that social interactions scale with
b ¼ 1þ d ≃ 7=6 was observed recently in urban
telecommunication networks (21). Together these
assumptions predict scaling exponents for a wide
variety of urban indicators, from patterns of
human behavior and properties of infrastructure
to the price of land (6, 9–12, 16, 21, 24, 25), sum-
marized in Table 1 (14).

Thus far, I obtained estimates for scaling ex-
ponents without the need for a detailed model of
infrastructure. Next, I show how network models
of infrastructure can help to illuminate urban
planning issues. Consider the infrastructure in a
city described by a network with h hierarchical
levels (Fig. 2A). The network branching, b, mea-
sures the average ratio of the number of units of
infrastructure at successive levels,Ni ¼ bi; e.g.,
number of paths to small roads, or larger roads
to highways. I assume that the number of in-
frastructure units at the lowest level, i = h, equals
the number of people, so thatNh ¼ N and
h ¼ lnN=lnb. These networks are not hierarchi-
cal trees (26) (Fig. 2A). The length of a network
segment (such as a road) at level i is li, crossing a
land area ai, and its transverse dimension is si, an
area in 3D networks and a length in 2D. To ob-
tain the above scaling relations, I assume that the
transverse dimension of the smallest network
units, s*, is independent of N. This leads to the
scaling of network width, si ¼ s*b

ð1−dÞðh−iÞ;
which says that highways or water mains are
much wider than building corridors or household

Table 1. Urban indicators and their scaling relations. Columns show measured exponent ranges
(see table S3 for details). Also shown are predicted values for D = 2, H = 1 (the simplest theoretical
expectation) and for general D, H. Agglomeration effects vanish as H → 0 (14). The larger range for the
observed land-area exponent is likely the result of different definitions of the city in space and distinct
measurement types. See table S3 and supplementary text for specific values of observed exponents,
discussion, and additional data sources.

Urban scaling relations Observed exponent range Model
(D = 2, H = 1)

Model
D, H

Land area
A ¼ aNa

[0.56,1.04] a ¼ 2
3 a ¼ D

D þ H

Network volume
An ¼ A0Nn

[0.74,0.92] n ¼ 5
6 n ¼ 1 − d

Network length
Ln ¼ L0Nl

[0.55,0.78] l ¼ 2
3 l ¼ a

Interactions per capita
Ii¼ I0Nd

[0.00,0.25] d ¼ 1
6 d ¼ H

DðD þ HÞ

Socioeconomic rates
Y ¼ Y0Nb

[1.01,1.33] b ¼ 7
6 b ¼ 1þ d

Network power
dissipation W ¼ W0Nw

[1.05,1.17] w ¼ 7
6 w ¼ 1þ d

Average land rents
PL ¼ P0NdL

[0.46,0.52] dL ¼ 1
2 dL ¼ 1 − aþ d
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pipes, s0 ¼ s*b
ð1−dÞh≫sh ¼ s*: Additionally, be-

cause infrastructure must reach everyone in the city
(6, 18), total network length is area filling,
li ¼ ai=l;with ai ¼ abða−1Þi: This means that
the land area per person,ah ¼ aNa−1, and shortest
network distance, lh ¼ ða=lÞNa−1, which defines
l, decrease with N. The total network length Ln
and network area An follow from the sum of the
geometric series over levels

Ln ¼ ∑
h

i¼0
liNi ¼

a
l
∑
h

i¼0
bai

¼ a
l
baðhþ1Þ − 1
ba − 1

≃ L0Na; L0 ¼ a=l ð1Þ

An ¼ ∑
h

i¼0
siliNi

¼ s*
a
l
bð1−dÞh ∑

h

i¼0
bðaþd−1Þi ≃ A0N1−d,

A0 ¼
s*a

lð1 − baþd−1Þ
ð2Þ

where I took aþ d < 1, which holds for D > 1.
I can now compute the cost of maintaining

the city connected as the energy necessary for
moving people, goods, and information across
its infrastructure networks. Thesemovements form
a set of currents, transporting various quantities
across the city and can be quantified by means of
the language of circuits. The scaling of si together
with total current, J, conservation across levels
Ji ¼ siriviNi ¼ si−1ri−1vi−1Ni−1 ¼ Ji−1for all i,
sets the scaling for rivi; the current density at
level i, where ri is the density of carriers in the
network and vi their average velocity. This quan-
tity is interesting because it controls the dis-
sipation mechanisms in any network. I obtain
rivi ¼ b−dri−1vi−1; which implies that the cur-
rent density decreases with increasing i, so that
highways are faster and/or more densely packed
than smaller roads (27, 28). Making the ad-
ditional assumption that individual needs,
rhvh ¼ r*v*, are independent of N (12) leads
to rivi ¼ bdðh−iÞr*v*. Then, the total current Ji =
J = J0N, with J0 ¼ s*r*v*, which is a function
only of individuals’ characteristics.

There aremany forms of energy dissipation in
networks, including those that occur at large veloc-
ity or density. Here, Imake the standard assumption
that the resistance per unit length per transverse
network area, r, is constant (2, 5), leading to the
resistance per network segment, ri ¼ r li

si
: For Ni

parallel resistors this gives the total resistance per
level, Ri ¼ ri

Ni
¼ ar

ls*
b−ð1 − a þ dÞi−ð1 − dÞh. The total

power dissipated, W, follows from summing
Wi ¼ RiJ 2i over levels,

W ¼ J 2 ∑
h

i¼1
Ri

¼ J 2
ar
ls*

b−ð1−dÞh
1−b−ð1−aþdÞðhþ1Þ

1−b−1þa−d ≃W0N 1þd;

W0 ¼
arJ 20

ls*ð1−b−1þa−dÞ
ð3Þ

which scales superlinearly, with exponent 1+ d =
1+1/6 in D = 2, H = 1. Thus, energy dissipation
scales with population like social interactions, as
observed in German urban power grids (12), so
that the ratio Y/W, a measure of urban efficiency,
is independent of city size.

Finally, I show that these results can be de-
rived by maximizing net urban output, L, as the
difference between social interaction outcomes,
Y, and infrastructure energy dissipation,W, under
settlement and network constraints,

L ¼ Y −W þ l1ðeAH=D −GN=AÞ þ

l2ðAn − cNdÞ →
dL=dG¼0

2a − 1
a

G*
N 2

AnðNÞ
ð4Þ

where c ¼ A0a−1=D andl1, l2 are Lagrange mul-
tipliers. Equation 4 gives the basis for the deri-
vation of the properties of every segment in the
network, through Eqs. 1 and 2, in analogy with
(2, 4, 5). The novelty in Eq. 4 is the prediction of
an optimal G ¼ G*; through dL=dG ¼ 0; and
the expectation that values of G for different cities

fluctuate around this value, as observed in Fig. 1B
(inset).

To see this, consider that, keeping e fixed and
a ¼ ðG=eÞa, both YandW growwithG, because
Y0 eG1−a and W0 eGa. This tension between
social interactivity, transportation costs, and spatial
settlement patterns is at the root of most urban
planning and policy. The limiting values of G
follow from the solutions to L ¼ 0 : G ¼ 0 and

G=Gmax ¼ ðelÞ2a
r0J 2

0
l2ð1−aÞ

h i 1
2a−1

, wherer0 ≈ r (14). It

follows that G* ¼ 1−a
a

! "1=ð2a−1Þ
Gmax ≃Gmax=8,

witha ≃ 2=3 (Fig. 1B, inset). Thus, cities will form
if the balance of social interactions is positive,
g( > 0: However, there is an upper value of
G ¼ Gmax(Fig. 1B, inset) beyond which dissipa-
tion costs overcome social benefits and a city may
split up into regions. For G < G*; the social
interaction potential of a city is underdeveloped.
Such places tend to be poorer and have less
advanced infrastructure. Thus, I would expect that
cities such as Riverside, California, or Brownsville,
Texas (Fig. 1B), where estimates ofG are less than
average, would typically benefit from measures

Fig. 2. The spatial city and its social and dissipative processes. (A) Gray blocks denote settled areas,
and spaces in between (white, yellow, green) represent infrastructure networks, treated in terms of a size
hierarchy. Total network length Ln ¼ 2(nb + 1)L ≃ A/l is area filling (circle), where nb is the number of
blocks across the city (14). Red lines denote the volume of public space spanned by an individual, which
determines his or her average number of social interactions. As the city grows and new land is settled
(orange blocks), the infrastructure network grows incrementally (orange segments). The flux rivi in larger
network segments is higher (black dots plus arrows), controlling the energy dissipation in the city. (B)
There is an optimal value of G at which cities are most productive. Cities can exist when social interactions
are positive G > Gmin = 0, and less than an upper value G < Gmax (red circles), at which point dissipation
costs overcome benefits. The optimal G = G* (green circle) corresponds to the most efficient city.

21 JUNE 2013 VOL 340 SCIENCE www.sciencemag.org1440

REPORTS



that promote greater mobility or density, in order
to achieve more intense and beneficial city-wide
social contact. Conversely, cities withG > G*
become victims of their socioeconomic success
by incurring escalating mobility costs. Bridgeport,
Connecticut’s, MSA (Fig. 1B) may be developed
in termsof its economic functions and infrastructure,
but might generally benefit from more compact
urban living or from increases in transportation
energy efficiency. That is, cities may be subopti-
mal either because they do not realize their full
social potential or because they do so in amanner
that renders transportation costs too high. In either
case, this approach shows how urban planningmust
take into account the delicate net balance between
density, mobility, and social connectivity and thus
provides a general framework for the iterative de-
velopment and assessment of urban policies.

That many cities are becomingmore global in
their economic relations and political and cultural
influence (29) does not alter the basic premises of
the theory. The internal dynamics and organiza-
tion of cities (as social networks of people and
institutions) produces new socioeconomic func-
tions that allow cities to exchange goods, services,
people, and information within and across na-
tional borders (22, 23, 30). Thus, even if some
singular places such as Hong Kong, Singapore,
or Dubai are primarily part of international eco-
nomies, the majority of the world’s most global
cities, such as Tokyo, New York, Los Angeles,
Beijing, Shanghai, Berlin, or Frankfurt, show
clear scaling effects in line with their own na-
tional urban systems (Fig. 1 and figs. S1 to S3).

All cities have spatial and social pockets of
greater and lower mobility, social integration,
better or worse services, and so forth (1, 17). It
should be emphasized that the theory does not
predict density profiles or socioeconomic differ-
ences inside the city, but the scaling for the prop-
erties of the city as a whole. None of these
pockets exist in absolute isolation; they are just
more or less “connected,” so they must be under-
stood with reference to the rest of the city (17).

The interactions between people also provide
the basis for institutional relationships via the
appropriate groupings of individuals in social or
economic organizations and by the consideration
of the resulting links between such entities. Insti-
tutions and industries that benefit from strong
mutual interactions may aggregate in space and
time within the city in order to maximize their
Y – W, a point first made by Marshall (23) in the
context of industrial districts. Other organizations
may benefit primarily from the general effects
that result from being in the wider city and col-
lecting a diversity of interactions, an argument
often attributed to Jacobs (22). These results es-
tablish necessary conditions for urban areas to
express certain levels of socioeconomic produc-
tivity, but it remains a statistical question (21, 25)
how well they are realized in specific places.

Most urban systems for which reliable data
exist confirm almost exactly the simplest pre-
dictions of the theory developed here. Examples

are the scaling of area for about 1800 cities in
Sweden (14, 18), or for roads in several hundred
American (Fig. 1A) and Japanese metropolitan
areas (fig. S3). One of the most spectacular agree-
ments is for the scaling of total area of paved
surfaces for all cities worldwide above 100,000
people (over 3600 cities) (14, 16). These exam-
ples illustrate the result derived above that urban
infrastructure volume scales faster with popula-
tion than land area (and both are sublinear). This
effect is visually apparent in large, developed cities,
where roads, cables, and pipes become ubiqui-
tous and eventually migrate into the third dimen-
sion, above or below ground.

Measurements of electrical cable length and
dissipative losses in German urban power grids
(12) further confirm these expectations and support
another key result obtained above: The energy loss
in transport processes scales like socioeconomic
rates (and both are superlinear). This shows how
cities are fundamentally different from other
complex systems, such as biological organisms
(4, 5) or river networks (2), which are thought to
have evolved to minimize energy dissipation.
Thus, the framework developed here also brings
into focus efforts for sustainable urban develop-
ment, by showing what kind of energy budget
must be expended in order to keep cities of vary-
ing sizes socially connected.

The predictions of the theory are further sup-
ported by data on the size of urban economies
from hundreds of cities in several continents, such
as those in the United States (Fig. 1B), Japan (fig.
S3), China (fig. S2A), or Germany (fig. S2B). In
particular, the specific result that scaling exponents
remain invariant over time, and are independent
of population size and level of development, is
confirmed by data for wages in U.S. metropolitan
areas spanning 40 years (fig. S3). Direct empir-
ical tests on the predictions made here for in-
dividual properties remain more difficult, but are
confirmed, for example, by measurements for the
scaling of social interactions with city size in the
cell phone networks of two European nations
(21), and for certain other patterns of individual
behavior (12, 20, 31). Nevertheless, for most
nations, we cannot yet access all predicted urban
quantities simultaneously, especially in develop-
ing countries. This provides many future tests
and applications for the theory, especially where
understanding urbanization is most critical.

The spatial concentration and temporal accel-
eration of social interactions in cities has some
striking qualitative parallels in other systems that
are also driven by attractive forces and become
denser with scale (20, 30). The most familiar are
stars, which burn faster and brighter (superlin-
early) with increasing mass. Thus, although the
form of cities may resemble the vasculature of
river networks or biological organisms, their pri-
mary function is as open-ended social reactors.
This view of cities as multiple interconnected
networks that become denser with increasing scale
(32) may also help to elucidate the function of other
systems with similar properties, from ecosystems

to technological information networks, despite
their different relationships to physical space.
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