
See	discussions,	stats,	and	author	profiles	for	this	publication	at:
http://www.researchgate.net/publication/222521682

Urban	Density	and	the	Rate	of
Invention

ARTICLE		in		JOURNAL	OF	URBAN	ECONOMICS	·	FEBRUARY	2007

Impact	Factor:	1.89	·	DOI:	10.1016/j.jue.2006.08.003	·	Source:	RePEc

CITATIONS

125

DOWNLOADS

565

VIEWS

186

3	AUTHORS,	INCLUDING:

Satyajit	Chatterjee

Federal	Reserve	Bank	Of	Phila…

80	PUBLICATIONS			1,050	CITATIONS			

SEE	PROFILE

Robert	M.	Hunt

Federal	Reserve	Bank	Of	Phila…

41	PUBLICATIONS			708	CITATIONS			

SEE	PROFILE

Available	from:	Gerald	Carlino

Retrieved	on:	08	September	2015

http://www.researchgate.net/publication/222521682_Urban_Density_and_the_Rate_of_Invention?enrichId=rgreq-bb107fc3-e4af-4289-b76f-dd76d686b5ce&enrichSource=Y292ZXJQYWdlOzIyMjUyMTY4MjtBUzoxMDIzODYyMzIyMDEyMjZAMTQwMTQyMjE5MTQ0NQ%3D%3D&el=1_x_2
http://www.researchgate.net/publication/222521682_Urban_Density_and_the_Rate_of_Invention?enrichId=rgreq-bb107fc3-e4af-4289-b76f-dd76d686b5ce&enrichSource=Y292ZXJQYWdlOzIyMjUyMTY4MjtBUzoxMDIzODYyMzIyMDEyMjZAMTQwMTQyMjE5MTQ0NQ%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-bb107fc3-e4af-4289-b76f-dd76d686b5ce&enrichSource=Y292ZXJQYWdlOzIyMjUyMTY4MjtBUzoxMDIzODYyMzIyMDEyMjZAMTQwMTQyMjE5MTQ0NQ%3D%3D&el=1_x_1
http://www.researchgate.net/profile/Satyajit_Chatterjee?enrichId=rgreq-bb107fc3-e4af-4289-b76f-dd76d686b5ce&enrichSource=Y292ZXJQYWdlOzIyMjUyMTY4MjtBUzoxMDIzODYyMzIyMDEyMjZAMTQwMTQyMjE5MTQ0NQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Satyajit_Chatterjee?enrichId=rgreq-bb107fc3-e4af-4289-b76f-dd76d686b5ce&enrichSource=Y292ZXJQYWdlOzIyMjUyMTY4MjtBUzoxMDIzODYyMzIyMDEyMjZAMTQwMTQyMjE5MTQ0NQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Federal_Reserve_Bank_Of_Philadelphia?enrichId=rgreq-bb107fc3-e4af-4289-b76f-dd76d686b5ce&enrichSource=Y292ZXJQYWdlOzIyMjUyMTY4MjtBUzoxMDIzODYyMzIyMDEyMjZAMTQwMTQyMjE5MTQ0NQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Satyajit_Chatterjee?enrichId=rgreq-bb107fc3-e4af-4289-b76f-dd76d686b5ce&enrichSource=Y292ZXJQYWdlOzIyMjUyMTY4MjtBUzoxMDIzODYyMzIyMDEyMjZAMTQwMTQyMjE5MTQ0NQ%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Robert_Hunt?enrichId=rgreq-bb107fc3-e4af-4289-b76f-dd76d686b5ce&enrichSource=Y292ZXJQYWdlOzIyMjUyMTY4MjtBUzoxMDIzODYyMzIyMDEyMjZAMTQwMTQyMjE5MTQ0NQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Robert_Hunt?enrichId=rgreq-bb107fc3-e4af-4289-b76f-dd76d686b5ce&enrichSource=Y292ZXJQYWdlOzIyMjUyMTY4MjtBUzoxMDIzODYyMzIyMDEyMjZAMTQwMTQyMjE5MTQ0NQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Federal_Reserve_Bank_Of_Philadelphia?enrichId=rgreq-bb107fc3-e4af-4289-b76f-dd76d686b5ce&enrichSource=Y292ZXJQYWdlOzIyMjUyMTY4MjtBUzoxMDIzODYyMzIyMDEyMjZAMTQwMTQyMjE5MTQ0NQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Robert_Hunt?enrichId=rgreq-bb107fc3-e4af-4289-b76f-dd76d686b5ce&enrichSource=Y292ZXJQYWdlOzIyMjUyMTY4MjtBUzoxMDIzODYyMzIyMDEyMjZAMTQwMTQyMjE5MTQ0NQ%3D%3D&el=1_x_7


Journal of Urban Economics 61 (2007) 389–419
www.elsevier.com/locate/jue

Urban density and the rate of invention ✩

Gerald A. Carlino ∗, Satyajit Chatterjee, Robert M. Hunt

Research Department, Federal Reserve Bank of Philadelphia, Ten Independence Mall, Philadelphia, PA 19106, USA

Received 9 January 2006; revised 8 August 2006

Available online 18 September 2006

Abstract

Economists, beginning with Alfred Marshall, have studied the significance of cities in the production and
exploitation of information externalities that, today, we call knowledge spillovers. This paper presents robust
evidence of those effects. We show that patent intensity—the per capita invention rate—is positively related
to the density of employment in the highly urbanized portion of MAs. All else equal, a city with twice the
employment density (jobs per square mile) of another city will exhibit a patent intensity (patents per capita)
that is 20 percent higher. Patent intensity is maximized at an employment density of about 2200 jobs per
square mile. A city with a more competitive market structure or one that is not too large (a population less
than 1 million) will also have a higher patent intensity. These findings confirm the widely held view that the
nation’s densest locations play an important role in creating the flow of ideas that generate innovation and
growth.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

With the emergence of endogenous growth theory in the 1980s, the externalities associated
with knowledge spillovers have played a prominent role in thinking about sustained economic
growth of nations (Romer [44], Lucas [35] and Porter [42]). Lucas [35] argues that these exter-
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nalities are most likely manifested in cities since their dense concentration of people and jobs is
best suited to exploit them.

To date, economists have provided limited, but tantalizing, evidence on the existence and
importance of these spillovers. Jaffe, Trajtenberg, and Henderson [31] find that nearby inventors
have a much higher propensity to cite each others’ patents, suggesting that knowledge spillovers
are indeed localized. But their study does not explain how city characteristics, such as size and
local density, influence the production of these spillovers. Several authors find that patent activity
increases with metropolitan area size (Feldman and Audretsch [21] and O hUallachain [41]). But
these studies do not control for inputs into the innovation process, such as R&D, and therefore
cannot identify the external effects.

Ciccone and Hall [17] look at the relation between county employment density and productiv-
ity at the state level. They find that a doubling of employment density in a county results in about
a 6 percent increase of average labor productivity. But why is density important for productiv-
ity? We show that density is important in explaining innovative output, and this may explain the
pattern in productivity found by Ciccone and Hall [17].

In this paper, we explicitly examine the effects of employment density (jobs per square mile),
city size (total employment), and other characteristics on the rate of innovation across metropol-
itan areas in the US. We use the average rate of patenting per capita—what we call patent
intensity—in a metropolitan area as a measure of innovative productivity in these areas. We find
a statistically significant relationship between patent intensity and employment density in the
highly urbanized portion of metropolitan areas. All else equal, patent intensity is about 20 percent
higher in a metropolitan area with employment density that is twice that of another metropolitan
area. Since employment density doubles almost four times in our data set, the implied gains in
patent intensity are substantial.

Additionally, we have assembled a very rich data set, which permits us to test a number of
related hypotheses. For example, based on the criterion of maximizing patent intensity, we find
evidence of an optimal city size—about the size of Austin, TX, and optimal employment den-
sity—about the density of Baltimore or Philadelphia. We find that cities with a more competitive
local market structure generate more patents per capita. We also find that our main results are
not sensitive to the measure of employment density used—we obtain similar coefficients using
all jobs or just certain categories of jobs most likely to consist of knowledge workers.

2. The literature

Much of the theoretical literature on urban agglomeration economies has focused on external-
ities in the production of goods and services rather than invention itself. Nevertheless, the three
mechanisms primarily explored in this literature are also relevant for the invention of new goods
and services: input sharing, matching, and knowledge spillovers.1 The first of these points to
the sharing of indivisible factors of production, or the benefits of increased variety of differenti-
ated inputs, that occurs in areas with a large number of final-goods producers (e.g., Helsley and
Strange [28]). For example, Ciccone and Hall [17] show how density can give rise to increasing
returns in production due to the greater variety of intermediate products available in denser loca-

1 These themes are developed in the excellent survey by Duranton and Puga [19]. Recent surveys of the empirical
literature on agglomeration economies include Eberts and McMillen [20] and Rosenthal and Strange [45].
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tions. They argue the positive correlation between employment density and productivity implies
that agglomeration economies dominate the congestion effects.2

A second theory argues that denser urban agglomerations improve the quality of matches
among firms and workers. Models of this sort include Wheeler [57], Helsley and Strange [27]
and Berliant, Reed, and Wang [11].3 In the latter, workers in dense locations are more selective
in their matches because the opportunity cost of waiting for a prospective partner is lower. That
is because, even though agents are more selective, on average they form matches more quickly.
As a result, the average output from matches is higher, and a higher share of the work force is
engaged in productive matches.

The third strand of theory argues that the geographic concentration of people and jobs in
cities facilitates the spread of tacit knowledge. While the exact mechanism is not well identified
in theory, the underlying idea articulated in Marshall [36] is that the geographic proximity created
by density facilitates the exchange of information among workers and firms. There does appear
to be some empirical evidence in favor of this view.4 But there can be too much density in the
sense that it may be harder to maintain trade secrets in more dense locations. This potential for
poaching may force firms to rely on patenting to a greater extent in dense areas.

While a full review of the empirical literature on the geographic extent of knowledge spillovers
is beyond the scope of this paper, we will touch on a few relevant papers.5 Rosenthal and Strange
[46] consider the importance of input sharing, matching, and knowledge spillovers for manu-
facturing firms at the state, county, and zip code levels of geography. They find the effects of
knowledge spillovers on agglomeration of manufacturing firms tend to be quite localized, influ-
encing agglomeration only at the zip code level.6

Andersson, Burgess, and Lane [2] show that the correlation between workers’ skills (educa-
tion) and employers’ productivity (revenue per worker) at the establishment level is larger in
counties with higher population densities. They argue that this is evidence of superior matching
between workers and firms in more dense labor markets. Jaffe, Trajtenberg, and Henderson [31],
mentioned earlier, find that a new patent is five to 10 times more likely to cite earlier patents
from the same city than one would expect based on a control group of other patents. Arzaghi and
Henderson [8] find the density of advertising agencies in New York City contributes to informa-
tion spillovers that enhance productivity. Jaffe [32], Audretsch and Feldman [10], and Anselin,
Varga, and Acs [4] found evidence of localized knowledge spillovers from university R&D to
commercial innovation by private firms, even after controlling for the location of industrial R&D.
Many of these studies find that these externalities tend to be highly localized even within a given
metropolitan area.

Following Glaeser et al. [24], much empirical research has focused on the effects of an econo-
my’s industrial structure on innovation and growth. Feldman and Audretsch [21], using data from
the U.S. Small Business Administration Innovation Data Base, found evidence supporting the in-
dustrial diversity thesis of Jacobs [30]. Glaeser et al. [24] studied employment growth between

2 See also Sedgley and Elmslie [48].
3 Similar testable implications can also be derived from Jovanovic and Rob [33], if one assumes either the meeting rate

or their imitation parameter (m) is increasing in the density of workers.
4 See, for example, the interactions of semiconductor engineers in Silicon Valley as described in Saxenian [47].
5 See Audretsch and Feldman [9] for a review of the literature on the geography of knowledge spillovers.
6 Several other studies find that knowledge spillovers dissipate rapidly with distance. See, for example, Arzaghi and

Henderson [8], Audretsch and Feldman [10], and Keller [34].
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1956 and 1987 across specific industries within cities. They also found that more industrially
diversified metropolitan areas grew more rapidly.

In contrast, Henderson, Kuncoro, and Turner [29] examined employment growth rates be-
tween 1970 and 1987 in eight manufacturing industries located in 224 cities. For five traditional
capital goods industries they found that employment growth in these sectors was positively corre-
lated with a high past concentration in the same industry, supporting the industrial concentration,
or Marshall–Arrow–Romer (MAR) view. They found evidence of both MAR and Jacobs exter-
nalities for new high-tech industries.

Economists debate the effects of an area’s market structure on the rate of innovation and
growth. Chinitz [16] and Jacobs [30] argued that the rate of innovations is greater in cities with
competitive market structures. Glaeser et al. [24] argue that the MAR view implies that local
monopoly may foster innovation because firms in such environments have fewer neighbors who
imitate them. The empirical literature tends to favors the Chinitz and Jacobs view over the MAR
view. Feldman and Audretsch [21] find that local competition is more conducive to innovative
activity than is local monopoly. Glaeser et al. [24] find that local competition is more conducive
to city growth than is local monopoly.

3. Our data and regression strategy

Since data on innovations are not generally available at the local level, we use patents per
capita, what we call patent intensity, in a metropolitan area as our measure of innovative produc-
tivity. This measure has its shortcomings, since some innovations are not patented and patents
differ enormously in their economic impact.7 Nonetheless, patents remain a useful measure of
the generation of ideas.

We regress patent intensity in a metropolitan area on measures of local employment density,
city size, and a variety of control variables. More specifically, the dependent variable in our
regressions is the log of patents per capita averaged over the period 1990–1999.8 We use an aver-
age over the 1990s to minimize any effects of year-to-year fluctuations in patent intensity, which
could be an issue in smaller metropolitan areas. To mitigate any bias induced by endogeneity
or reverse causation, the independent variables are at 1989–1990, or roughly beginning-of-the-
period values. In Section 6.2, we investigate these potential biases more closely and find little, if
any, effect on our results. Before presenting the exact specification, we will describe the variables
used in our regressions.

The sample consists of 280 metropolitan areas as defined in 1983. For brevity, we refer to
these as MAs. Included in this sample are 264 metropolitan statistical areas (MSAs) and primary
metropolitan statistical areas (PMSAs). To include as many patents as possible in our data set, we
group 25 component PMSAs into their corresponding nine consolidated metropolitan statistical
areas (CMSAs). We also group 21 separate MSAs into seven metropolitan areas.9 This aggrega-
tion permits us to include an additional 9000 patents (6.5 percent of the total) in our regressions.
Our main results are not affected if we drop these observations.

7 For a general discussion on the use of patents as indicators, see Griliches [25].
8 For details on the construction of all our variables, see the appendix.
9 See Section A.2 of the appendix for a list of MSAs that were combined.
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3.1. The patent data

Patents are assigned to metropolitan areas according to the residential address of the first
inventor named on the patent.10 We allocate patents to a county or metropolitan area when we
can identify a match to a unique county or metropolitan area. Patents that cannot be uniquely
matched are excluded from our data set. We can locate over 581,000 patents granted over the
1990–1999 period to inventors living in the US to either a unique county or MA, a match rate of
96 percent. Just over 534,000 (92 percent) of these patents are associated with an urban county.

3.2. Land area

By definition, employment density is the number of jobs per square mile of land area. Employ-
ment density varies enormously within metropolitan areas. It is typically highest in the central
business district (CBD) of an MA’s central city and generally falls off as we move away from
the CBD. But the vast majority of the land in MSA counties is in fact rural in nature, and there
is also considerable variation in the degree to which the counties surrounding a central city are
built out. For example, in the 1990 census only 12 percent of the 580,000 square miles of land
in MSA counties was categorized as urban in nature. The urban share of MSA land area varied
from less than 1 percent in Yuma, AZ to 65 percent in Stamford, CT.

We use a measure of land area that reflects the interaction of workers in labor markets that
are sufficiently dense to call urban—the urbanized area (UA) of cities.11 These are defined as
continuously built-up areas with a population of 50,000 or more, comprising at least one place
and the adjacent densely settled surrounding area with a population density of at least 1000 per
square mile (US Census Bureau [54]). While UAs often cross county lines, we collected data on
urbanized area land in each county and then aggregated this number to the MA level.

3.3. Employment and density

For our purposes, the ideal measure of jobs and employment density would count only those
jobs located in the urbanized area of cities. Unfortunately, such data are generally unavailable.
For example, our preferred measure of employment is derived from the BLS survey of payrolls.
We also use these data in our measures of MA size and industrial composition.12 The primary
advantage of these data is that jobs are reported based on the place of work rather than the place
of residence. The disadvantage is that the data are reported at the county or MSA level, but not
for urbanized areas.

The Census Bureau reported a measure of employment in UAs in the 1990 census, but this
count is based on a worker’s place of residence, not his or her place of work. Most workers
live and work in the same UA, but a significant share of UA employment includes workers who
live outside the UA. For most UAs, a residency-based measure of employment will understate
employment density. The degree of understatement varies considerably across MAs.13

10 In Section 6.1 we verify that our results are not sensitive to the choice of the first inventor’s address.
11 Mills and Hamilton [38, p. 6] argue that urbanized areas correspond to the economist’s notion of urban areas.
12 All industry breakdowns in this paper are based on the 1987 Standard Industrial Classification system.
13 The ratio of residency-based employment in UAs to establishment-based employment in the associated MAs in our
data set is 0.58. The ratio varies from as little as 0.24 in Visalia, CA, to as high as 0.91 in Fort Lauderdale, FL.
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While we do not have an ideal measure of employment density, we employ two approxima-
tions that should bracket the ideal one. Both measures use the same denominator: the sum of the
land area lying in the urbanized area portion of the counties that compose an MA. In the numer-
ator of the first measure, we use the sum of all (establishment-based) employment reported for
the same counties. We refer to this measure as MA employment density. In the numerator of the
second measure, we use (residency-based) employment in the urbanized area portion of the same
counties, as reported in the 1990 census. We refer to this measure as UA employment density.

To the extent that some metropolitan employment occurs outside of urbanized areas, our MA
employment density measure will overstate the actual density of jobs in the built-up portion of
MAs. We believe the extent of this overstatement is small and this measure is distinctly superior
to alternative measures. In 1990 urbanized areas accounted for 87 percent of the non-rural land
area of MSAs, 94 percent of the non-rural population, and 95 percent of non-rural employment by
place of residence. The latter statistic probably understates the share of jobs located in urbanized
areas because, as Glaeser and Kahn [23] show, MSA employment is more tightly distributed
around the central business district than are residents.

In any case, the most likely effect of such measurement error in our regressions would be a
negative bias in the coefficient on employment density. That is because we include in our den-
sity measure jobs (in “rural” parts of the MA) less likely to be associated with innovation. In
that sense, any bias works against our hypothesis. To be conservative, however, we also ran our
regressions using our alternative measure, UA employment density. In addition, we report regres-
sions where we instrument for each density measure to better control for possible endogeneity
bias or measurement error.14

3.4. Local market structure and industrial diversification

To investigate the potential effects of local labor market structure on inventive output, we
construct a variable similar to one suggested in Glaeser, et al. [24]—the number of establishments
per worker in the metropolitan area. According to this definition, the higher this ratio, the more
competitive is the local labor market. This variable may capture more than a static sense of
industrial structure. If cities, or industries within a city, are experiencing considerable entry or
start-up activity, one would expect average establishment size to be smaller.

To explore the possible effects of local industrial diversification or specialization, we construct
a Herfindahl–Hirschman Index (HHI) of industry employment shares. Specifically, we calculate
the sum of the square of MA employment shares, in 1989, accounted for by seven one-digit SIC
industries, plus federal civilian jobs, state and local government jobs, and the remainder. Higher
values of this index for an MA imply that its economy is more highly specialized.

3.5. Local research inputs

Given that our regression relies on a cross section, it is important to take into account factors
that influence overall productivity in a city. We include many control variables for this purpose.
For example, it is well known that patent propensity varies significantly across industries, so we

14 There is another source of potential downward bias in our coefficients. As noted earlier, a number of papers find that
knowledge spillovers are highly localized, dissipating rapidly with distance from the source. Since we are using UAs or
MAs as our unit of analysis, the coefficients on employment density we obtain may be underestimates.
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include in our regressions the shares of total MA employment in manufacturing and eight other
industrial sectors.

We also control for the concentration of firms located in high technology industries. We do this
by calculating the share of patents obtained in an MA for the years 1980–1989 owned by firms
in research-intensive industries.15 To control for variations in patent propensity by field of tech-
nology, we computed the shares of patents obtained in each MA during 1980–1989 categorized
into one of six technology groups as defined in Hall, Jaffe, and Trajtenberg [26].16

It is especially important to control for local inputs into the R&D process. To account for the
relative abundance of local human capital, our regressions include the share of the population
(over 25 years of age) with a college degree or more education in 1990. We also control for the
influence of having many nearby universities, a possible college town effect, by including the
ratio of college enrollment to population in the years 1987–1989.

We include three other measures of research inputs in terms of their intensities.17 First, we
include in our regressions the sum of spending on R&D in science and engineering at local col-
leges and universities divided by full-time enrollment at colleges and universities in the MA over
the years 1987–1989.18 We hope to capture the intensive margin—the R&D resources available
to potential researchers.19 Similarly, our regressions include the sum of federal funding at gov-
ernment research laboratories in the MA divided by the number of federal civilian employees in
the MA (averaged over the period 1987–1989). Finally, we include in our regressions the number
of private R&D facilities in 1989 divided by the number of private non-farm establishments.20

3.6. Other control variables

Does a correlation between patent intensity and employment density reflect an actual differ-
ence in inventive activity or, instead, differences in the way firms protect their inventions? In her
study of innovations in 19th century Britain, Moser [40] suggests that firms in industries that
rely less on patents tend to locate more closely together, while the opposite is true for firms in
industries that rely more on patents. In this paper, our regressions are based on aggregate patent-
ing per capita at the MA level, so we are unable to account for such patterns here. But Moser
also suggests that firms located in the most dense areas may rely more on patenting than they
otherwise would if it is more difficult to maintain trade secrets in such environments. In that case,
greater difficulty in maintaining secrecy, rather than spillovers, might explain our results.

To test the significance of this alternative explanation, we create an index of the importance
of trade secrecy that varies across metropolitan areas. We do this by weighting industry-specific
measures of the effectiveness of trade secrecy reported in Cohen, Nelson, and Walsh [18] by
the industry shares reflected in the mix of private R&D facilities in every MA in our data set.

15 See Section A.1. of the appendix for details on the construction of this variable.
16 Every patent in our data set was assigned to one of six broad categories (chemical, computer, medical, electrical,
mechanical, and all other). We included the shares of the first five categories in our regressions.
17 Not surprisingly, the levels of these inputs are highly correlated with city size.
18 Ideally, we would want to normalize by full-time S&E faculty or graduate students, but these cannot easily be assigned
to particular campuses for a number of university systems that account for a significant portion of R&D.
19 Anselin, Varga, and Acs [4] review studies examining localized spillovers from university R&D. Andersson, Quigley,
and Wilhelmsson [3] find evidence that the expansion of the number of university-based researchers in a local labor
market is positively associated with an increase in the number of patents granted in that area.
20 Over 1800 private labs associated with the top 500 R&D performing corporations were geographically located using
information contained in the Bowker Directory of American Research and Technology [13].
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A higher value of this index for an MA implies that trade secrets are relatively more effective for
the mix of industries reflected in its R&D facilities. In addition, all of our regressions control for
the local mix of industries and technologies (see above).

We include a number of other control variables. We control for variations in demographics by
including the share of the population in 1990 that is of working age. We also include the per-
cent change in employment over the years 1980–1989 as a control for the effects of unobserved
differences in local economic opportunities on inventive activity. We also include seven dummy
variables based on the BEA economic region in which the MA is located (the Rocky Mountain
region is omitted).

3.7. Our specification

Our main regression equation is simply:

Pi = C + a1Di + a2D
2
i + a3Ei + a4E

2
i + a5COMPi +

14∑

g=6

agINDSHRi + a15HITECHi

+
20∑

k=16

a16kPATCLASSik + a21PCTCOLi + a22CEi + a23Ui + a24FEDLABi

+ a25R&Dii + a26TSi + a27EMPGT i + a28WAPi +
35∑

j=29

aj REGIONij + εi

where:
Pi = Log of average patents per capita, 1990–1999 in the ith MA;
Di = Log of MA job density in 1989 in i or UA job density in 1990 in i;
Ei = Log of 1989 level of employment in MAi ;
COMPi = Log of the number of establishments in MAi divided by total employment in MAi , in
1989;
INDSHRi = The share of employment in one-digit SIC industries in 1989 MAi ;
HITECHi = Share of patents in MAi during 1980–1989 obtained by firms in R& D intensive
industries;
PATCLASSik = Share of patents obtained in MAi during 1980–1989, classified in one of five
technological categories;
PCTCOLi = Percent of 1990 population over 25 with at least a college degree in MAi ;
CEi = Ratio of the college enrollment to population in i;
Ui = University R& D spending per student, averaged for 1987–1989 in MAi ;
FEDLABi = Federal lab R& D per federal civilian job, averaged for 1987–1989 in MAi ;
R&Di = Ratio of private labs to establishments in 1989 in i;
TSi = Trade Secrets Index = The log of a weighted average of ratings of the effectiveness of
trade secret protection in i;
EMPGT i = The percent change in employment in MAi during the period 1980–1989;
WAPi = Share of the working age population in i;
REGIONij = dummy variables indicating in which of seven BEA regions MAi is located;
εi is the random error term.
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4. Main results

Table 1 shows the summary statistics for the variables used in the analysis. The average
number of patents per 10,000 of population obtained over the 1990s—our measure of patent
intensity—is about 2. San Jose stands out, with a patent intensity of 17. At the other end of
the distribution, the patent intensity for McAllen, TX, is only 0.07. Figure 1 demonstrates the
skewness of patent intensity across cities.

The urbanized land area of MAs varies considerably across cities: For Grand Forks it is less
than 15 square miles; for New York–Northeastern New Jersey, it exceeds 3000 square miles.
Establishment-based employment in our MAs varies from 37,000 (Caspar, WY) to 9.6 million
(New York–Northeastern New Jersey), while residency-based employment in the urbanized areas
of these MAs varies from 17,000 to 7.6 million. The mean of MA employment density is 1727
jobs per square mile while the mean of UA employment density is 987 jobs per square mile. The
latter varies from 263 jobs per square mile (Gadsden, AL) to 2777 jobs per square mile (Los
Angeles–Long Beach).

Figure 2 plots the log of patent intensity against the log of MA employment density. A moder-
ate correlation (0.39) is clearly evident; there is a similar correlation between patent intensity and
UA employment density. In the regressions that follow, we explore how much of this correlation
remains after controlling for the many other factors that are likely to influence inventive activity.
The model is estimated using ordinary least squares in STATA, but we report robust standard
errors (White correction) to control for any heteroskedasticity.

4.1. Employment density and city size

Table 2 presents the main results of the paper. The regressions in columns 1 and 3 show that,
however measured, the effect of employment density on patent intensity is positive and statis-
tically significant.21 These coefficients can be interpreted as elasticities. All else equal, patent
intensity is about 17 percent to 20 percent higher in an MA that is twice as dense as another MA.
Employment density varies by more than 1200 percent across the sample, so the implied gains
in the per capita invention rate are substantial.

Columns 2 and 4 report the results from regressions that add the square of our density mea-
sures as independent variables. There is clear evidence of diminishing returns at very high density
levels. The optimal level—according to our MA employment density measure—is 2190 jobs per
square mile.22 That is about the 75th percentile of our data set, about the levels of Baltimore
(2168) and Philadelphia (2181). In Section 5, we explore more narrow definitions of employ-
ment density (e.g., scientists and engineers). We again find evidence of an optimal density using
these measures, but only at levels attained by about 10 percent of our sample.

We now turn to the question of scale economies in the more traditional sense. Previous re-
search (Feldman and Audretsch [21], O hUallachain [41], and Bettencourt, Lobo and Strumsky
[12]) suggests that measures of innovation are positively related to metropolitan size (popula-
tion). Similarly, Ciccone and Hall [17] argue that the positive coefficient between average labor
productivity and employment density implies that agglomeration effects dominate congestion ef-
fects. In their analysis, the elasticities for the agglomeration and congestion effects are assumed

21 Unless otherwise noted, t -statistics are reported in parentheses.
22 The 95 percent confidence interval on this estimate is 1418–3384 jobs per square mile.
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Table 1
Descriptive statistics

Mean SD Min. Max.

Patents Per 10,000 of Population, Avg. 1990–1999 2.057 2.110 0.0732 17.14
MA Employment Density, 1990 1727 689.3 408.1 5021
UA Employment Density, 1990 987.4 405.9 263.4 2,777
Urbanized Area Land Area, 1990 211.5 333.5 14.50 3015
Urbanized Area Land Area, 1980 182.4 298.8 14.00 2808
Urbanized Area Land Area, 1970 155.2 262.4 2.2 2425
MA Water Area, 1990 178.4 373.1 0.3700 2483
MA Water Area, 1990 (percent) 7.810 12.58 0.0300 65.11
MA Employment, 1989 392,480 862,483 37,375 9,665,015
MA Employment, 1970 320,765 719,959 34,059 8,368,789
UA Employment, 1990 265,431 663,744 17,406 7,563,283
MA Employment Growth, 1979–1989 (%) 20.47 15.54 -25.80 77.69
Working Age Population, 1990 (%) 64.43 3.077 53.85 74.79
Ratio of UA to MA Employment, 1989–1990 0.5864 0.1350 0.2472 0.9396
HHI of Industry Employment Shares, 1989 0.1791 0.0186 0.1456 0.2819
Establishments per 100,000 Employees, 1989 4425 597.8 2667 6365
Manufacturing Employment, 1989 (%) 14.92 7.447 1.815 46.06
Construction Employment, 1989 (%) 5.371 1.305 2.881 11.02
Transportation Employment, 1989 (%) 4.426 1.522 1.553 11.88
Wholesale Employment, 1989 (%) 4.349 1.385 0.6752 9.178
Retail Employment, 1989 (%) 17.71 1.935 11.96 24.83
Services Employment, 1989 (%) 25.79 4.207 9.823 44.78
FIRE Employment, 1989 (%) 6.729 2.042 2.679 16.68
Federal Civilian Employment, 1989 (%) 2.297 2.385 0.2936 20.84
State & Local Gov. Employment, 1989 (%) 11.74 4.671 4.405 34.55
High-tech Patents, 1980–1989 (%) 18.78 19.47 0 88.91
Chemicals Patents, 1980–1989 (%) 17.14 12.82 0 76.11
Computer Patents, 1980–1989 (%) 5.692 6.453 0 48.23
Medical Patents, 1980–1989 (%) 9.210 10.55 0 88.00
Electrical Patents, 1980–1989 (%) 6.418 6.089 0 44.80
Mechanical Patents, 1980–1989 (%) 24.89 10.03 5.600 62.37
College Educated, 1990 (%) 19.54 6.235 8.100 45.40
Enrolled in College, 1987–1989 (%) 6.661 5.423 0 34.06
University R&D Spending ($1000) per Student, 0.5623 0.9324 0 5.297
Avg. 1987–1989
Federal Lab R&D Spending ($1000) per Federal
Civilian Employee, 1987–1989

1.396 10.81 0 161.4

Private R&D Labs per 1000 Establishments, 1989 0.3037 0.3863 0 2.710
Trade Secrets Index 50.96 5.382 34.04 70.69
Restaurants per 10,000 of Population, 1989 16.28 2.676 8.910 29.06
Museums per 10,000 of Population, 1989 0.1308 0.0917 0 0.4806
Violent Crimes per 10,000 of Population, 1989 54.35 30.71 6.604 220.4
Property Crimes per 10,000 of Population, 1989 521.8 165.1 140.7 956.9

to be constant. We relax that assumption here, allowing for diminishing returns to scale and
density as congestion effects become larger.

What do we find? When we include MA employment (in logs), but not its square, in our re-
gressions (not shown), the coefficient on this measure of city size is not statistically significant.23

23 The coefficient is 0.03 with a p-value of about 0.40.
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Fig. 1. Patent intensity across MAs.

Fig. 2. Patents per capita & MA employment density.
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Table 2
Patent intensity regressions—robust standard errors

Dependent variable: Patents per capita† 1 2 3 4

MA Employment Density, 1989† 0.195 4.138
(2.21)** (2.24)**

MA Employment Density Squared† −0.269
(2.14)**

UA Employment Density, 1990† 0.169 3.847
(1.70)* (1.98)**

UA Employment Density Squared† −0.273
(1.92)*

MA Employment (10,000), 1989† 0.407 0.366 0.410 0.317
(2.73)*** (2.36)** (2.74)*** (1.96)*

MA Employment Squared† −0.053 −0.047 −0.055 −0.039
(2.90)*** (2.45)** (3.02)*** (1.92)*

Establishments per Employee, 1989† 1.577 1.585 1.592 1.624
(4.59)*** (4.69)*** (4.76)*** (4.90)***

Manufacturing Employment, 1989 (%) 2.060 1.947 2.169 2.251
(2.99)*** (2.80)*** (3.06)*** (3.10)***

Construction Employment, 1989 (%) −0.302 −0.006 −0.648 −0.826
(0.10) (0.00) (0.21) (0.27)

Transportation Employment, 1989 (%) −3.249 −3.396 −3.304 −3.072
(1.22) (1.26) (1.26) (1.19)

Wholesale Employment, 1989 (%) −2.388 −2.698 −1.586 −1.911
(0.73) (0.84) (0.50) (0.61)

Retail Employment, 1989 (%) −3.749 −4.376 −3.956 −4.339
(1.69)* (2.02)** (1.80)* (2.01)**

Services Employment, 1989 (%) 0.315 0.041 0.135 0.145
(0.33) (0.04) (0.14) (0.15)

FIRE Employment, 1989 (%) 1.235 1.195 0.996 1.236
(0.68) (0.67) (0.54) (0.69)

Federal Civilian Employment, 1989 (%) −1.992 −2.380 −2.167 −2.057
(1.37) (1.64) (1.48) (1.44)

State & Local Gov. Employment, 1989 (%) −3.861 −3.958 −3.825 −3.858
(3.07)*** (3.11)*** (2.97)*** (3.00)***

High-tech Patents, 1980-89 (%) 0.861 0.820 0.865 0.838
(4.42)*** (4.15)*** (4.43)*** (4.29)***

Chemicals Patents, 1980–1989 (%) 1.728 1.749 1.758 1.772
(4.31)*** (4.39)*** (4.39)*** (4.44)***

Computer Patents, 1980–1989 (%) 3.306 3.423 3.332 3.390
(5.47)*** (5.70)*** (5.46)*** (5.57)***

Medical Patents, 1980–1989 (%) −0.442 −0.336 −0.498 −0.329
(0.72) (0.54) (0.79) (0.51)

Electrical Patents, 1980–1989 (%) 0.870 1.014 0.878 0.977
(1.87)* (2.21)** (1.89)* (2.18)**

Mechanical Patents, 1980–1989 (%) 0.975 0.994 0.949 0.950
(2.21)** (2.23)** (2.12)** (2.13)**

College Educated, 1990 (%) 4.390 4.368 4.434 4.353
(4.90)*** (4.92)*** (4.91)*** (4.87)***

University R&D per Student, 1987–1989 0.143 0.142 0.146 0.146
(3.12)*** (3.02)*** (3.18)*** (3.15)***

Federal Lab R&D / Fed Civ Jobs, 1987–1989 0.007 0.006 0.006 0.006
(3.70)*** (3.62)*** (3.49)*** (3.30)***
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Table 2 (continued)

Dependent variable: Patents per capita† 1 2 3 4

Private R&D Labs / Establishments, 1989 0.340 0.336 0.323 0.330
(4.56)*** (4.73)*** (4.31)*** (4.66)***

Trade Secrets Index (lab-weighted) † 0.308 0.326 0.363 0.319
(1.23) (1.32) (1.41) (1.26)

Constant −18.815 −32.873 −18.701 −30.911
(5.47)*** (4.67)*** (5.64)*** (4.11)***

Adjusted R-squared 0.786 0.789 0.784 0.787

Notes. N = 280. Regressions include a lag of MA employment growth, the share of the population enrolled in college,
the share of the population of working age, a constant, and BEA region dummies.

† Included in log form in regression.
* Significant at 10 percent.

** Significant at 5 percent.
*** Significant at 1 percent.

When we include the squared term, as we report in Table 2, the coefficients on these variables
are statistically significant. The implied optimal size, measured in terms of MA employment, is
about 500,000 jobs, about the 80th percentile of the size distribution in our data.24 If we assume
a labor force participation rate of 66 percent, this corresponds to a population of about 750,000,
roughly the size of Austin, TX, or Raleigh-Durham, NC, in 1990. Thus, after controlling for the
effects of employment density, the benefits of urban scale are realized for cities of moderate size.
In fact, with the exception of San Jose, the top 5 percent of our metropolitan areas ranked in
terms of patent intensity had populations below 1 million in 1989.

4.2. Local competition

The regressions suggest that the rate of innovation is enhanced in more competitive local
environments characterized by many small firms, rather than in local economies dominated by
a few large firms. The coefficient on the number of establishments per employee is about 1.6
and is precisely measured. The coefficient can be interpreted as an elasticity, since the variable is
included in logs in our regression. The effect is economically significant, as this ratio more than
doubles across our sample. This result is consistent with the views of Chinitz [16], Feldman and
Audretsch [21], Glaeser et al. [24], and Jacobs [30] that competitive local labor markets facilitate
innovation. We are not able to determine whether this results from static (market structure) or
dynamic (firm entry) effects, or both.

4.3. Industrial mix and specialization

Patent activity varies enormously across industries. As expected, the manufacturing share
of MA employment is positively related to local patent intensity. All else equal, a 10 percent
increase in the manufacturing share of employment is associated with a 3 percent increase in
patent intensity. Conversely, a 10 percent increase in the state and local government share of
employment is associated with a 4.5 percent decrease in patent intensity.

24 The 95 percent confidence interval for this estimate is 236,448–1,071,271.
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If knowledge spillovers occur largely within industries, specialized cities may be more ef-
ficient producers of inventions. On the other hand, if important spillovers are generated across
industries, perhaps more industrially diverse cities may be more efficient innovators. To test for
such effects, we constructed a commonly used measure of concentration, an HHI of industry em-
ployment shares (see Section 3). When we include this variable in our regressions (not shown),
the estimated coefficient is never statistically significant.25 We also constructed a measure of
technological specialization using our technology share controls. When we included this vari-
able in our regressions (not shown), the estimated coefficient was negative, but not significant
(p = 0.13). In short, our results suggest that while the mix of industries is obviously important
in explaining the overall patent intensity of cities, the concentration or dispersion of economic
activity across industries does not appear to have an independent effect.

4.4. Local research inputs

The results reported in Table 2 clearly show that local research inputs are important to
explaining the variation in patent intensity across MAs. The coefficients on our controls for
research-intensive industries and the controls for most technology fields are statistically signifi-
cant and precisely measured. These variables capture characteristics relevant to patent intensity
that are not fully explained by local industry mix and structure. The largest elasticities, evaluated
at the mean, are for chemical inventions (0.30), mechanical inventions (0.24), computers (0.19),
and high-technology industries (0.16).

By far the most powerful effect is generated by human capital (the share of the adult popu-
lation with at least a college degree). A 10 percent increase in this ratio is associated with an
8.6 percent increase in patents per capita. We also included a variable to capture the relative size
of higher education in a metropolitan area—the ratio of college enrollment to population. The
coefficient on this variable (not shown) is not significant in our regressions, suggesting there is
no separate college town effect on the local invention rate.26

Our other controls for local research intensities include the ratio of academic R&D in science
and engineering to student enrollment (in 1987–1989), federal lab R&D spending per federal
civilian employee (in 1987–1989), and the number of private R&D labs per 1000 establishments
(1989). All of these variables have a positive impact on the rate of patenting, but the implied
elasticities are relatively small. For example, a 10 percent increase in private R&D intensity is
associated with only a 1 percent increase in patent intensity. The elasticity for academic R&D
intensity is slightly smaller (0.08). Still, these effects are economically significant because there
is considerable variation in academic and private R&D intensity in our data (see Table 1).

Agrawal and Cockburn [1] argue that local academic R&D is likely more productive, in terms
of its contribution to additional patents, in the presence of a large research-intensive firm located
nearby—the anchor tenant hypothesis. Taking this effect into account, they report a significant
positive correlation between local patents and academic publications in the fields of medical
imaging, neural networks, and signal processing. We looked for a more general interaction—
do cities with a relative abundance of academic and private R&D enjoy a disproportionately
high patent intensity? We tested for this by interacting our measures of academic and private

25 When all our employment shares are also included, the coefficient on HHI is essentially zero. If we include only the
manufacturing share of employment, the coefficient on HHI is negative, but not significant.
26 In other regressions we included the log of the number of colleges and universities in the MA. But the coefficient on
this variable is never statistically significant.
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R&D intensity and including them in our regressions (not shown). We were surprised to find a
significant, but negative coefficient (−0.13) on this interaction term.27 There does appear to be
some degree of substitution between local academic and private R&D investments, but the effect
is quite small—the implied elasticity at the mean is −0.03.28

4.5. Trade secret protection

Recall that we constructed an index of the efficacy of trade secret protection among firms lo-
cated in an MA. If the estimated coefficient on this variable is negative, we might be concerned
that firms are substituting patents for trade secret protection in dense areas because the former are
relatively more effective in such environments. We find, instead, the estimated coefficient is pos-
itive but insignificant at standard confidence levels. This is consistent with Cohen, Nelson, and
Walsh [18], who find a positive correlation in firms’ rating of the effectiveness of trade secrecy
and patent protection. It is also consistent with the result in Fosfuri and Rønde [22], who find that
trade secret protection stimulates clustering in a model of firm location in the presence of infor-
mation spillovers. In any case, city size and employment density remain important in explaining
patent intensity even after controlling for an industry’s reliance on trade secret protection.

Helsley and Strange [27] argue that knowledge transfers between agents may arise through
a form of barter in the absence of established property rights in the underlying ideas. They ar-
gue this barter process may be more effective in smaller metropolitan areas where anonymity
is harder to maintain. In larger MAs, informal exchange (or cooperation) may become unsus-
tainable and agents are forced to patent their ideas before they can exchange them for anything
valuable. To test this hypothesis, we interacted our trade secrets variable with city size and, alter-
natively, with employment density (not shown), but we did not find any statistically significant
interactions. These results suggest that the phenomenon we are measuring is real, i.e., there really
are more inventions.

4.6. Employment growth and other control variables

The coefficient on employment growth in the previous decade (not shown) is positive but not
statistically significant in our main regressions (it is sometimes significant in other specifica-
tions).29 This is true even when we drop our establishments per worker variable, which might
also pick up variations in city or industry dynamics. Our demographic control, the share of the
population of working age (not shown), is always positive but is statistically significant in only
some regressions. The estimated coefficients on two of the seven BEA region dummies (not
shown) are statistically significant. MAs located in the New England and Southwest regions had
lower patent intensities. Overall, it appears that our controls do a good job of accounting for the
other factors that contribute to innovation in cities.

27 The p-value is 0.026. The coefficients on the academic and private R&D variables remain significant; in fact they
increase by more than the estimated coefficient on the interaction (but the changes in these coefficients are not statistically
significant). The other regression coefficients hardly change. Note that the correlation between the private and academic
R&D intensities in our data is only 0.17.
28 We also interacted the R&D intensity of private and government labs, but found no significant effects.
29 It varies from about 0.28 to about 0.34 in the regressions reported in Table 2.
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5. The density of knowledge workers

To this point, our measures of employment density reflect the entire workforce of the MA.
Not all of these jobs are directly involved in the process of inventing new products or processes.
So it is reasonable to ask whether it would be better to instead focus on a measure of occupations
consisting of the knowledge workers in an MA.

We avoid doing this in our main regressions (Table 2) for several reasons. First, it is not obvi-
ous what the appropriate set of occupations should be. Second, a substantial amount of invention
occurs when users of a product or process modify it to suit their particular needs (Morrison,
Roberts, and Von Hippel [39]). These users may not fall into the occupations we might include
in the class of knowledge workers. Third, our industry, technology, and human capital controls
ought to absorb most of the effect of the unobserved variation in the composition of the work-
force. If our general measures impart a bias, then the bias should work against us.

Nevertheless, we re-estimate our specifications using two more narrow measures of employ-
ment density. The first includes only those jobs falling into the Census Bureau’s classification
of professional specialty occupations. This grouping includes engineers, scientists, social scien-
tists, doctors, and other health professionals. But it also includes teachers, lawyers, artists, and
athletes. The second includes only scientists and engineers living in the urbanized area in 1990.
Both of these are residency-based measures of employment in 1990.

In Table 3, we report results using each measure in our primary specifications. In the first
and third columns of the table, we show that the estimated coefficient on employment density is
about 0.22 and is measured very precisely (p < 0.01). The estimated coefficients on most other
variables change only slightly. The estimated coefficient on our human capital measure falls a bit,
especially when we use the density of scientists and engineers in our regressions. The estimated
coefficients on manufacturing employment share are also a bit smaller.

We also constructed a density measure counting only jobs that do not fall into the Census
Bureau’s professional and specialty classification. This measure explicitly excludes scientists,
engineers, medical professionals, and college professors. If we include only this measure of den-
sity in our regression (not shown), the estimated coefficient is 0.19 and is statistically significant
(p < 0.05). If we include both density measures in the regression (not shown), professional
specialty occupations and the other jobs, the coefficient on the latter measure is negative but
insignificant, while the coefficient on the former measure rises and remains significant. We con-
clude that while much of the effect of density on patent intensity is concentrated in these more
narrow categories of jobs, using our general measures of job density does not bias our results.

Columns 2 and 4 of Table 3 verify there are diminishing returns to employment density even
when using these measures. The optimal density of professional specialists is 320 per square
mile, the 88th percentile of our sample. The optimal density of scientists and engineers is 57 per
square mile, the 92nd percentile of our sample. Thus, in our data, relatively few MAs exhaust the
returns to scale associated with the density of these jobs. The estimated optimal scale, measured
in terms of population, in these regressions falls to about 650,000 to 700,000.

6. Testing for robustness

In this section, we examine a number of factors that might potentially affect our results. We
consider alternative specifications, reverse causation and endogeneity bias, and spatial depen-
dence. None of the main results are affected after controlling for these issues.
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Table 3
Knowledge worker regressions—robust standard errors

Dependent variable: Patents per capita† 1# 2# 3## 4##

Professional Specialty Jobs Density, 1990† 0.228 2.125
(2.72)*** (2.18)**

Professional Specialty Jobs Density Squared† −0.185
(1.94)*

Scientists & Engineers Density, 1990† 0.218 0.601
(3.05)*** (3.14)***

Scientists & Engineers Density Squared † −0.074
(2.16)**

MA Employment (10,000), 1989† 0.396 0.343 0.343 0.271
(2.69)*** (2.23)** (2.28)** (1.75)*

MA Employment Squared† −0.053 −0.045 −0.048 −0.036
(2.93)*** (2.35)** (2.73)*** (1.93)*

Establishments per Employee, 1989† 1.526 1.530 1.468 1.420
(4.55)*** (4.61)*** (4.44)*** (4.40)***

Manufacturing Employment, 1989 (%) 2.017 1.842 1.629 1.500
(2.95)*** (2.72)*** (2.43)** (2.23)**

Construction Employment, 1989 (%) −0.338 −0.080 −1.908 −2.066
(0.11) (0.03) (0.62) (0.67)

Transportation Employment, 1989 (%) −3.078 −3.391 −4.540 −4.762
(1.17) (1.30) (1.70)* (1.81)*

Wholesale Employment, 1989 (%) −2.335 −2.836 −0.773 −1.326
(0.73) (0.90) (0.24) (0.43)

Retail Employment, 1989 (%) −4.025 −4.772 −3.859 −4.393
(1.81)* (2.18)** (1.78)* (2.06)**

Services Employment, 1989 (%) 0.154 −0.099 −0.297 −0.401
(0.16) (0.11) (0.32) (0.43)

FIRE Employment, 1989 (%) 1.298 1.130 0.411 0.322
(0.70) (0.62) (0.22) (0.18)

Federal Civilian Employment, 1989 (%) −2.259 −2.637 −3.455 −3.523
(1.61) (1.87)* (2.51)** (2.57)**

State & Local Gov. Employment, 1989 (%) −4.246 −4.325 −4.390 −4.507
(3.38)*** (3.41)*** (3.31)*** (3.43)***

High-tech Patents, 1980–1989 (%) 0.834 0.815 0.779 0.800
(4.32)*** (4.18)*** (4.18)*** (4.22)***

Chemicals Patents, 1980–1989 (%) 1.706 1.693 1.639 1.616
(4.27)*** (4.23)*** (4.08)*** (4.04)***

Computer Patents, 1980–1989 (%) 3.165 3.257 2.807 2.984
(5.30)*** (5.46)*** (4.45)*** (4.67)***

Medical Patents, 1980–1989 (%) −0.440 −0.346 −0.386 −0.403
(0.72) (0.57) (0.64) (0.67)

Electrical Patents, 1980–1989 (%) 0.877 0.964 0.801 0.893
(1.91)* (2.15)** (1.81)* (1.99)**

Mechanical Patents, 1980–1989 (%) 0.967 0.965 0.854 0.847
(2.21)** (2.19)** (2.00)** (2.02)**

College Educated, 1990 (%) 4.226 4.316 3.929 4.007
(4.73)*** (4.90)*** (4.43)*** (4.56)***

University R&D per Student, 1987–1989 0.140 0.137 0.136 0.145
(3.03)*** (2.98)*** (3.06)*** (3.20)***

Federal Lab R&D / Fed Civ Jobs, 1987–1989 0.007 0.006 0.005 0.005
(3.70)*** (3.44)*** (2.58)** (2.55)**

(continued on next page)
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Table 3 (continued)

Dependent variable: Patents per capita† 1# 2# 3## 4##

Private R&D Labs / Establishments, 1989 0.330 0.336 0.282 0.341
(4.50)*** (4.87)*** (3.81)*** (4.65)***

Trade Secrets Index (lab-weighted)
†

0.312 0.315 0.376 0.342
(1.26) (1.30) (1.60) (1.47)

Adjusted R-squared 0.788 0.790 0.796 0.798

Notes. Regressions include a lag of MA employment growth, the share of the population enrolled in college, the share of
the population of working age, a constant, and BEA region dummies.

† Included in log form in regression.
# N = 280.

## N = 278.
* Significant at 10 percent.

** Significant at 5 percent.
*** Significant at 1 percent.

6.1. Alternative specifications

To this point, we have associated inventions with MAs on the basis of the home address of the
first inventor listed on the patent. One might wonder about how the first inventor is selected and
whether this process might affect our regression results. For example, suppose a multinational
company patents an invention developed by researchers working in separate labs in different
cities or even countries.

For a variety of reasons, we do not believe such concerns should significantly affect our re-
sults. About 49 percent of our patents have only one inventor. Among the other patents, only
2.6 percent involve inventors living in different countries, and only a third of these report a first
inventor living in the US. Among the patents where the first two inventors live in an American
city, nearly 70 percent live in the same MA. When inventors do live in separate MAs, they tend
to live far apart. The average distance is 560 miles.

Table 4 reports two sets of regressions. The first two columns of Table 4 are based on the
same specification reported in columns 1 and 3 of Table 2, except we add 3 new variables to
the regressions: the share of the MA’s patents with a second inventor residing in another MA,
the log of the average distance between inventors’ MAs for those patents, and the square of this
distance. The coefficient on each of these variables is statistically significant. All else equal, the
higher the share of an MA’s patents with a second inventor living in another MA, the lower is the
MA’s patent intensity. This is not surprising as it is likely that firms with a more decentralized
workforce are also likely to have a more even spatial distribution of patents. The estimated coeffi-
cients on our density measures are somewhat larger than reported in Table 2, while the estimated
optimal city size falls to about 500,000.

Somewhat surprisingly, the coefficient on the average distance between inventors’ MAs is
positive (the coefficient on the square of distance is negative). Conditional on relying on a dis-
tant co-inventor, the optimal distance between MAs is 270–330 miles, depending on the density
measure used in the regression. These results suggest that inventors may be taking advantage
of differentiated knowledge available in other MAs, a finding consistent with the intuition of
Berliant, Reed, and Wang [11].

In columns 3 and 4 of Table 4 we report the findings when we repeat the specification used
in columns 1 and 3 of Table 2, except that the observations are based on the address of the
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Table 4
Second inventor regressions—robust standard errors

Patents per capita† Patents per capita, 2nd Inventor†

1 2 3 4

MA Employment Density, 1989† 0.217 0.262
(2.43)** (1.90)*

UA Employment Density, 1989† 0.264 0.486
(2.59)** (3.36)***

MA Employment (10,000), 1989† 0.268 0.261 0.578 0.552
(1.89)* (1.85)* (3.19)*** (3.11)***

MA Employment Squared, 1989† −0.038 −0.041 −0.070 −0.074
(2.22)** (2.39)** (3.06)*** (3.28)***

2nd Inventors not in same MA as 1st Inventor, −0.537 −0.600 −2.518 −2.634
1990–1999 (%) (3.34)*** (3.67)*** (8.79)*** (8.99)***

Average distance between MA of 1st and 2nd 0.427 0.451 0.889 0.938
Inventor, 1990–1999† (3.98)*** (4.13)*** (5.80)*** (5.90)***

Average distance between MA of 1st and 2nd −0.038 −0.041 −0.098 −0.103
Inventor Squared, 1990–1999† (3.11)*** (3.26)*** (5.47)*** (5.52)***

Establishments per Employee, 1989† 1.542 1.606 1.591 1.759
(5.06)*** (5.34)*** (3.60)*** (3.92)***

College Educated, 1990 (%) 4.225 4.235 4.160 4.081
(5.07)*** (5.03)*** (4.08)*** (4.08)***

Enrolled in College, 1987–1989 (%) −0.609 −0.609 −0.886 −0.963
(0.61) (0.61) (0.64) (0.71)

University R&D per Student, 1987–1989 0.155 0.157 0.184 0.184
(3.52)*** (3.59)*** (3.27)*** (3.34)***

Private Labs / Establishments, 1989 0.006 0.005 0.009 0.009
(3.03)*** (2.90)*** (2.94)*** (3.11)***

Federal Lab R&D / Fed. Civ. Jobs, 1987–1989 0.382 0.360 0.408 0.373
(5.17)*** (4.89)*** (3.85)*** (3.55)***

Trade Secrets Index (lab-weighted)† 0.339 0.418 0.763 0.899
(1.37) (1.64) (1.98)** (2.37)**

Employment Growth, 1980–1989 (%) 0.333 0.362 0.311 0.332
(1.52) (1.67)* (0.96) (1.03)

Constant −19.027 −19.816 −24.542 −27.435
(6.19)*** (6.47)*** (5.07)*** (5.52)***

Adjusted R-squared 0.809 0.810 0.807 0.813

Notes. N = 280. Regressions include lagged industry employment shares, high-tech industry patent share, lagged patent
class shares, the share of the population of working age, and BEA region dummies.

† Included in log form in regression.
* Significant at 10 percent.

** Significant at 5 percent.
*** Significant at 1 percent.

second inventor on the patents. The coefficients on the density and size variables are statistically
significant and take the same sign as in Table 2. Similar results (not shown) are obtained when
we use any of our other density measures. We conclude that our findings are not sensitive to the
choice of the first inventor’s address in our analysis.
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6.2. Reverse causation, endogeneity, and consumption amenities

Our regressions estimate the effects of employment density and city size on patent intensity.
In this section, we directly address the possibility of reverse causation—patent intensity might
affect city size, employment density, or both.

We begin with simple Granger causality tests (not shown). In the forward regression, we
regress patent intensity in the 1990s on patent intensity in 1975–1979, and MA employment
density in 1989 (all in log form). The coefficient on the last of these variables is 0.43 and signifi-
cant at the 1 percent level. In the reverse regression, we regress MA employment density over the
1990s on employment density in 1989 and patent intensity in 1975–1979 (all in log form). The
coefficient on the lag of patent intensity is significant at the 1 percent level, but the coefficient is
also very small (−0.01). While we reject the hypothesis of no reverse causation, the estimated
effect is more than an order of magnitude smaller than the relationships estimated in our main
regressions.

Even though all of our independent variables are significantly lagged, one may still be con-
cerned about the possibility of endogeneity and a resulting bias in the estimated coefficients.
A related concern is that a correlation between patent intensity and employment density might
occur if highly productive (i.e., inventive) workers are attracted to MAs by consumption ameni-
ties (e.g., variety) not adequately controlled for in our regressions and which are not already
reflected in our human capital variables.30 To address these possibilities, we perform instrumen-
tal variables (2SLS) regressions and examine Hausman tests for endogeneity bias. We instrument
for employment density, employment, and its square.

In addition to the other right-hand-side variables in our main regressions, we include as instru-
ments a variety of weather and topographic variables. The existence of a significant correlation
between such variables and density has been documented in other work (Rappaport [43]). We
also include deep lags of MA urbanized land area (1980) and employment (1970), in logs, and
the square of these variables. Finally, to address the possibility that other consumption ameni-
ties explain our results, we include as instruments the number of museums, restaurants, violent
crimes, and property crimes in 1989, each expressed in per capita terms.31

Our weather and topography variables are derived from the USDA’s Economic Research Ser-
vice Natural Amenity Scale.32 These data are reported at the county level and include mean
hours of sunlight in January, mean temperature in January and July, and the percent of county
area covered by water. These variables are aggregated to MAs, weighting by county land area.33

We also construct dummy variables that reflect the presence of five topographic features in MA
counties: plains, tablelands, open hills and mountains, hills and mountains, and plains with hills
and mountains.

The F -statistic in each of the first stage regressions is at least 24 or higher, suggesting that
our instruments are strong. Columns 1 and 3 of Table 5 report OLS estimates for the same sam-
ple of cities we can estimate using our instruments (we lose six observations owing to missing
variables). Columns 2 and 4 report the coefficients from the instrumental variables (IV) regres-

30 While it is possible that such amenities may attract more population, and thus employees, it does not explain the neg-
ative correlation between patent intensity and urbanized land area in a regression (not shown) controlling for employment
and our other control variables.
31 These data are derived from County Business Patterns.
32 For more information, see http://www.ers.usda.gov/data/naturalamenities and McGranahan [37].
33 We also include the water area of MA counties, in square miles, as reported by the Census Bureau for 1990.

http://www.ers.usda.gov/data/naturalamenities
http://www.ers.usda.gov/data/naturalamenities
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Table 5
Instrumental variables regressions—robust standard errors

Dependent variable: Patents per capita† OLS IV OLS IV

1 2 3 4

MA Employment Density, 1989† 0.228
(2.58)**

MA Employment Density, 1990–1999 avg.† 0.160
(1.66)*

UA Employment Density, 1990† 0.185 0.218
(1.83)* (1.78)*

MA Employment (10,000), 1989† 0.403 0.411
(2.69)*** (2.72)***

MA Employment Squared, 1989† −0.053 −0.056
(2.87)*** (3.02)***

MA Employment (10,000), 1990–1999 avg.† 0.353 0.355
(2.20)** (2.21)**

MA Employment Squared, 1990–1999 avg.† −0.047 −0.050
(2.42)** (2.59)**

Establishments per Employee, 1989† 1.530 1.457 1.549 1.509
(4.20)*** (4.06)*** (4.36)*** (4.16)***

College Educated, 1990 (%) 4.579 4.646 4.630 4.613
(4.71)*** (4.77)*** (4.72)*** (4.65)***

Enrolled in College, 1987–1989 (%) 0.131 0.036 0.233 0.100
(0.12) (0.03) (0.22) (0.09)

University R&D per Student, 1987–1989 0.146 0.153 0.149 0.154
(3.16)*** (3.27)*** (3.21)*** (3.28)***

Private Labs / Establishments, 1989 0.007 0.006 0.007 0.006
(3.84)*** (3.42)*** (3.49)*** (3.45)***

Federal Lab R&D / Fed. Civ. Jobs, 1987–1989 0.336 0.338 0.315 0.316
(4.39)*** (4.41)*** (4.10)*** (4.09)***

Trade Secrets Index (lab-weighted)† 0.328 0.348 0.388 0.403
(1.30) (1.37) (1.49) (1.55)

Employment Growth, 1980–1989 (%) 0.353 0.352 0.379 0.394
(1.44) (1.39) (1.56) (1.58)

Constant −18.726 −17.651 −18.537 −18.449
(5.18)*** (5.05)*** (5.33)*** (5.08)***

Adjusted R-squared 0.791 0.791 0.788 0.788

Notes. N = 274. In addition to the independent variables used in Table 2, our instruments include temperature in January
and July, days of sunlight in January, surface water in square miles and as a share of total area, 5 dummy variables
for topography, urbanized land area in 1980 (in logs) and its square, employment in 1970 (in logs) and its square, the
number of restaurants and museums in 1989 (in logs) and violent and property crime rates in 1989. The second stage
regressions include lagged industry employment shares, high-tech industry patent share, patent class shares, the share of
the population of working age, and BEA region dummies.

† Included in log form in regression.
* Significant at 10 percent.

** Significant at 5 percent.
*** Significant at 1 percent.

sions. The estimated coefficients on MA employment density fall somewhat relative to OLS in
the IV regression but the opposite pattern is observed when we examine the regressions with UA
employment density. This is what we would expect when we correct for measurement error in
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these two variables (see Section 3). In any case, Hausman tests do not identify any systematic
differences between the OLS and IV coefficients in these regressions.

We also performed IV regressions using an even deeper lag of urbanized land area (1970)
as an instrument (not shown). The estimated coefficients on employment density and city size
are slightly larger than the comparable OLS estimates, but they are no longer statistically signifi-
cant.34 Again, Hausman tests do not identify any systematic differences between the IV and OLS
estimates. We conclude that any remaining endogeneity in our regressions is unlikely to explain
our main results.

6.3. Spatial dependence

There is a very high degree of spatial inequality in the distribution of patent activity. Patenting
tends to be highly concentrated in the metropolitan areas of the northeast corridor, around the
Research Triangle in North Carolina, and in California’s Silicon Valley. Even though the coeffi-
cients on our regional dummy variables are typically insignificant, this clustering of innovative
activity suggests there could be strong spatial dependence at a more localized level and, if so, it
should be controlled for in our empirical analysis.

The conjecture, then, is that patent intensity in one MA may be highly correlated with patent
intensity in nearby MAs. The consequences of spatial autocorrelation are the same as those as-
sociated with serial correlation and heteroskedasticity: When the error terms across MAs in our
sample are correlated, OLS estimation is unbiased but inefficient. However, if the spatial corre-
lation is due to the direct influence of neighboring MAs, OLS estimation is biased and inefficient
(Anselin [7]).

The literature suggests two approaches to dealing with spatial dependence. In the first ap-
proach, spatial dependence is modeled as a spatial autoregressive process in the error term:

ε = λWε + μ,

μ ∼ N(0, σ 2),

where λ is the spatial autoregressive parameter and μ is the uncorrelated error term. W is a spatial
weighting matrix where nonzero off-diagonal elements represent the strength of the potential
interaction between the ith and j th MAs. We use the inverse of the square of the geographic
distance between MAs to fill in the off-diagonal elements of W . The null hypothesis of no spatial
error dependence is H0: λ = 0.

The second approach models the spatial dependence in patenting activity via a spatially
“lagged” dependent variable:

P = ρWP + Xβ + ε

where P is an N ×1 vector and N is the number of locations in our study; ρ is the autoregressive
parameter (a scalar); W is the N × N spatial weight matrix described above; X is an N × K

matrix of other explanatory variables from before; and ε is the N × 1 random error term. The
null hypothesis of no spatial lag is H0: ρ = 0.

Following Anselin and Hudak [5], we perform three tests for spatial autocorrelated errors:
Moran’s I test, the Lagrange multiplier (LM) test, and a robust Lagrange multiplier test (ro-
bust LM). We also perform two tests for the spatial lag model (LM test and a robust LM test).

34 In these regressions, the p values for the coefficients on MA and UA employment density, respectively, are 0.12 and
0.16. The sample size in these regressions is only 227.
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Table 6
Spatial dependence testsa (p-values)

Density measure: MA employment density

Test for: Spatial error Spatial lag

Specification: Table 2.1 Table 2.2 Table 2.1 Table 2.2

Moran’s I λ = 0 0.000 0.000
LM − λ = 0 0.350 0.401
Robust LM − λ = 0 0.788 0.749
LM − ρ = 0 0.156 0.254
Robust LM − ρ = 0 0.270 0.404

Density measure: UA employment density

Test for: Spatial error Spatial lag

Specification: Table 2.3 Table 2.4 Table 2.3 Table 2.4

Moran’s I λ = 0 0.000 0.000
LM − λ = 0 0.369 0.306
Robust LM − λ = 0 0.835 0.582
LM − ρ = 0 0.151 0.275
Robust LM − ρ = 0 0.255 0.504

Notes. N = 280.
a Moran’s I is based on standardized z-values that follow a normal distribution. The Lagrange multiplier (LM) tests

are distributed as χ2
1 with critical levels of 3.84 (p = 0.05).

The Moran’s I test is normally distributed, while the LM tests are distributed χ2 with k and one
degree of freedom, respectively.

We estimate each of the specifications previously reported in Table 2 using these various
tests for spatial dependence. The results are summarized in Table 6. The null hypothesis of zero
spatial lag cannot be rejected in any specification. The results for spatial error are somewhat
more ambiguous. The null hypothesis is clearly rejected according to the Moran’s I test, but
not according to the LM and robust LM tests. Anselin [6] reports that the Lagrange multiplier
tests are more robust than the Moran’s I test under Monte Carlo simulations, which suggests that
spatial error is unlikely to be an issue for our specifications.

Nevertheless, we re-estimate each specification reported in Table 2, incorporating a correction
for either spatial error or spatial lag. Table 7 presents the results for the specifications used in
columns 1 and 3 of Table 2.35 As expected, we did not find any instances of a significant spatial
error or spatial lag coefficient. The primary effect of using maximum likelihood procedures is
that most of the coefficients are estimated more precisely.

7. Conclusion

Patent intensity—the per capita invention rate—is positively related to the density of employ-
ment in the highly urbanized portion of MAs. All else equal, the number of inventions per person
is about 20 percent greater in an MA with a local economy that is twice as dense as another MA.
Since local employment density doubles more than four times in the sample, the implied gains
in patents per capita due to urban density are substantial. In short, we find empirical evidence

35 These estimates were obtained using the Spatreg procedure in STATA. The results for the specifications reported in
columns 2 and 4 of Table 2 are nearly identical to the OLS results.
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Table 7
Patent intensity regressions—correcting for spatial effects (robust standard errors)

Dependent variable: Patents per capita† Spatial error Spatial lag

1 2 3 4

MA Employment Density, 1989† 0.206 0.188
(2.42)** (2.29)**

UA Employment Density, 1990† 0.171 0.158
(1.81)* (1.70)*

MA Employment (10,000), 1989† 0.410 0.413 0.402 0.406
(2.93)*** (2.94)*** (2.88)*** (2.90)***

MA Employment squared† −0.053 −0.055 −0.052 −0.055
(3.11)*** (3.23)*** (3.09)*** (3.20)***

Establishments per Employee, 1989† 1.540 1.563 1.577 1.589
(4.69)*** (4.88)*** (4.94)*** (5.11)***

College Educated, 1990 (%) 4.283 4.359 4.443 4.488
(5.10)*** (5.14)*** (5.27)*** (5.29)***

Enrolled in College, 1987–1989 (%) 0.323 0.386 0.269 0.340
(0.34) (0.40) (0.28) (0.35)

University R&D per Student, 1987–1989 0.144 0.147 0.144 0.147
(3.41)*** (3.46)*** (3.35)*** (3.41)***

Federal Lab R&D / Fed. Civ. Jobs, 1987–1989 0.006 0.006 0.007 0.006
(3.87)*** (3.61)*** (4.03)*** (3.80)***

Private R&D Labs / Establishments, 1989 0.346 0.327 0.335 0.319
(4.92)*** (4.63)*** (4.82)*** (4.56)***

Trade Secrets Index (lab-weighted)† 0.344 0.391 0.290 0.342
(1.47) (1.62) (1.23) (1.42)

Employment Growth, 1980–1989 (%) 0.273 0.322 0.357 0.386
(1.16) (1.39) (1.59) (1.74)*

Constant −19.448 −19.109 −18.704 −18.540
(6.01)*** (6.14)*** (5.84)*** (6.02)***

Log-Likelihood −131.28 −132.85 −131.35 −132.66
λ 0.0342 0.0259

(1.02) (0.78)

ρ 0.4182 0.4205
(1.13) (1.13)

Notes. N = 280. Z statistic reported in parentheses. Regressions include lagged industry employment shares, high-tech
industry patent share, patent class shares, the share of the population of working age, and BEA region dummies.

† Included in log form in regression.
* Significant at 10 percent.

** Significant at 5 percent.
*** Significant at 1 percent.

consistent with a theoretical micro foundation of endogenous growth. In addition, we find evi-
dence of increasing returns to scale in the invention process, but holding density constant, these
returns are exhausted at a modest city size—certainly below 1 million in population. Similarly,
we find evidence of diminishing returns to density, but only at levels attained by a quarter of our
sample.36

36 Diminishing returns to density sets in much later in our sample (about the 90th percentile) if we instead use only
scientists and engineers in our density measure.
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Our results also support theories that suggest that more competitive local market structures
are more conducive to innovation. We find that industrial and technology mix are important
in explaining the variation in patent intensity across cities, but we found no significant effects
for our measures of industrial or technological specialization. We found that local R&D inputs,
especially human capital, contribute to higher patent intensities and there is evidence of a very
modest substitution effect between academic and private R&D intensity. Variations in the reliance
of a city’s industries on trade secret protection did not have a significant effect in our regressions.

In the empirical work we have been careful in our definition of the unit of analysis and the
inclusion of control variables that reflect the available resources (e.g. R&D, human capital, etc.)
that are relevant to the local output of innovations. Thus we believe our coefficients on city size
and density reflect effects that are external to the firm, but not to the city itself. On the other
hand, our regressions are not sufficient to identify a particular mechanism that explains why
these externalities are important. We have suggested a few possibilities, such as better matches
between firms and workers or easier transmission of tacit knowledge, but our technique cannot
distinguish among them. In order to do so, we require more refined theories and yet more data.

To investigate these questions more precisely, one might examine an additional direction of
cross-sectional variation, that is, differences across industries. In particular, this would allow
one to test the significance of urbanization economies (city size) and localization economies
(the local size of the industry).37 A stronger approach is to focus on firms, the source of most
of the innovations in our data, and to investigate the contribution of city characteristics to the
productivity of the research efforts located in them. These are topics of our ongoing research.
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Appendix A

A.1. Patent data

Our patent data are derived from data sets furnished by the Technology Forecasting and As-
sessment Branch of the US Patent and Trademark Office. These include the US Patent Inventor
File 1977–1999: All Grants; 75–76 Utility Patents Only and the PATSIC99 file.

We assemble the home address information of the first inventor named on each patent from the
inventor’s file. We began with 1,198,376 patents granted to inventors with an American address
over the years 1975–1999. We assigned a state-county FIPS code for each patent by matching
address information against the 1998 vintage of NIST’s FIPS55 place names data set. We ob-
tained unique ZIP code–county and place name–county matches for 81 percent of the patents.

37 For preliminary work in this direction see Carlino and Hunt [15].
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For another 8.5 percent of the patents, we could not initially identify a unique county for the
inventor but we could identify a unique metropolitan area. Another 6.6 percent of patents were
geographically located via matches against the location of an R&D lab of the firm owning the
patent and manual searches.

In all 1,155,133 patents were matched to a county or an MA, while 43,243 were not. Of those
patents that were successfully placed in an MSA, 581,001 were granted between 1990 and 1999
(inclusive); 46,647 were located outside an MSA. That leaves 534,354 patents in MAs that were
used to construct the patent variable.

The field of technology dummies (medical, chemical, computer, electrical, and mechanical)
are constructed by matching the primary classification number of each of our patents to one of
the sets of classifications contained in Appendix 1 of Hall, Jaffe, and Trajtenberg [26].

To construct the high-technology industry patent share, we match our patent numbers to those
contained in the NBER Patent Citations Data File, and obtain the CUSIP of the firm that was
initially assigned the patent. We associate this firm, using its CUSIP, to the SIC assigned to it
in the 1999 vintage of Standard and Poor’s Compustat. High tech industry patents are those
associated with firms that have a three digit SIC code in one of the R&D intensive industries
identified in Office of Technology Policy [55]. We calculate the high tech share of patents in a
city by dividing this number by the number of all patents in the city that we can match to a firm in
the NBER Patent Citations Data File. In total, we were able to match over 141,000 urban patents
(41 percent of the total) granted in the 1980s to firms in the 1999 vintage of Compustat.

A.2. Our definition of metropolitan areas

Our MA definitions are based primarily on MSA definitions defined by the Office of Manage-
ment and Budget in 1983 (http://www.census.gov/population/estimates/metro-city/83mfips.txt).
Several adjustments are made:

– The six MSAs in Puerto Rico are removed.
– New England County Metropolitan Areas (NECMAs) are used as our MAs in New England.
– The Bureau of Economic Analysis (BEA) uses its own set of county-equivalent codes to

tabulate data for independent cities and their surrounding counties together. For all data from
the Regional Economic Information System (REIS), data for our MAs are built up including
these independent cities.

– Nine Consolidated Metropolitan Statistical Areas (CMSAs) are employed instead of their
25 component MSAs: Chicago, IL–IN–WI; Cincinnati–Hamilton, OH–KY–IN; Cleveland–
Akron–Lorain, OH; Dallas–Fort Worth, TX; Houston–Galveston–Brazoria, TX; Kansas
City, KS–MO; Portland–Vancouver, OR–WA; Seattle–Tacoma, WA; and St. Louis–East St.
Louis–Alton, IL-MO.

– Seven ad hoc metropolitan areas were also created: Denver–Boulder–Greeley (Boulder–
Longmont, CO PMSA; Denver, CO PMSA; & Greeley, CO MSA); Greenville–Anderson
(Anderson, SC MSA and Greenville–Spartanburg, SC MSA); Los Angeles–Anaheim
(Anaheim–Santa Ana, CA PMSA and Los Angeles–Long Beach, CA PMSA); Midland–
Odessa (Midland, TX MSA and Odessa, TX MSA); New York–Northern New Jer-
sey (Bergen–Passaic, Jersey City, Middlesex–Somerset–Hunterdon, Monmouth–Ocean,
Nassau–Suffolk, New York, Newark, Orange County, New York); San Francisco–Oakland
(Oakland, CA PMSA and San Francisco, CA PMSA); and Sarasota–Bradenton (Bradenton,
FL MSA and Sarasota, FL MSA).

http://www.census.gov/population/estimates/metro-city/83mfips.txt
http://www.census.gov/population/estimates/metro-city/83mfips.txt
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We used these definitions for certain cities rather than the underlying MSAs because two
or more cities shared a common border and we could not always assign some patents (a few
thousand) to an MSA with certainty (see Patent Data above). If we used the underlying MSAs,
we would either have to discard these patents or take the chance that the error rate in assigning
patents to cities might vary systematically across cities. The methodology used in USPTO [56]
assigns equal shares of patents to counties with common place names when a patent cannot be
matched to a unique county. This too might imply a higher error rate in assigning patents when
MSAs are close to each other.

We compared our MSA patent counts to those reported in USPTO [56] and found them to
be extremely close, except for a few instances. In some cases two or more MSAs were in close
proximity (e.g., Dallas and Fort Worth). In a few others, the place name of the inventor’s address
was common to more than one county, regardless of distance. The PTO algorithm divided those
patents equally across those counties.

Our definition of metropolitan areas or the manner of allocating patents to MSAs does not
significantly influence our results. In an earlier version of this paper (Carlino, Chatterjee, and
Hunt [14]) we estimated the relationship between patent intensity and employment density using
a data set of 296 MSAs and PMSAs as defined by OMB in 1983 and using patent counts built up
from the data contained in USPTO [56]. The results were qualitatively the same as those reported
here, although the estimated coefficients were somewhat larger.

A.2.1. Missing data
Four MSAs are dropped in the analysis because of missing data. One MSA (Enid, OK) does

not have a corresponding urbanized area. Owing to disclosure limitations, a Herfindahl index of
industry employment shares cannot be calculated for Atlantic City, NJ, and Tallahassee, FL. In
addition, manufacturing employment is not available in 1989 for Columbus, GA–AL.

A.3. Geographic variables

Urbanized Area land area for every county was obtained from Table 34 of Census Bureau
[51]. We also obtained comparable measures for urbanized areas defined in 1980 and 1970 from
Census Bureau [49,50].

There are a few instances where a county includes land area associated with more than one
urbanized area. For example, portions of Bucks County, PA, are associated with the Philadel-
phia and Trenton urbanized areas. To be consistent with our other county-based measures, we
attribute this land area (and associated employment) to the MA associated with that county (e.g.,
Philadelphia).

The weather and topography instrumental variables are based on the USDA’s Natural Amenity
Scale project (http://www.ers.usda.gov/data/naturalamenities). The data are reported at county
level, which we aggregate, based on county land area, to MSAs. We use the variables indicating,
for the years 1941–1970, mean hours of sunlight and temperature in January, mean temperature
in July, the percent of land area covered by surface water, and five dummy variables for the
presence of a particular type of geography (plains, tablelands, open hills and mountains, hills
and mountains, and plains with hills and mountains) built up from a finer gradation in the ERS
data. We also included as an instrument the amount of MA area covered by water in 1990. Those
data were obtained from a county level tabulation reported in the Census Bureau’s Gazeteer
(http://www.census.gov/geo/www/gazetteer/gazette.html).

http://www.ers.usda.gov/data/naturalamenities
http://www.ers.usda.gov/data/naturalamenities
http://www.census.gov/geo/www/gazetteer/gazette.html
http://www.census.gov/geo/www/gazetteer/gazette.html
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A.4. Economic and demographic variables

Our primary employment data are county-level values reported in the BEA’s REIS database
and aggregated to the MA level. We use the 1999 vintage of these data. The data are derived
from the BLS Covered Employment and Wages Program (ES-202), which represents the average
annual number of full- and part-time jobs held by all workers who are covered by unemployment
insurance. Industry breakdowns are based on 1987 SIC definitions.

Our measures of residency-based employment in 1990 were obtained from the Census Bu-
reau web site (www.americanfactfinder.com). Those data are derived from the STF3 (5 percent
sample) tape. A separate count was obtained for every county that includes an urbanized area.
These are aggregated to MAs in the same manner as our other variables.

Our counts of employment for professional specialty occupations are derived from the 1990
census (STF3). This is a residency-based count, but here we include all residents in the coun-
ties making up an MA, not just residents in the urbanized area portion of those counties. The
occupation codes for this category of jobs are codes 043–202 in the 1990 Census Occupation
Classification System.

Our counts of scientists and engineers are residency-based measures of workers in these occu-
pations living in urbanized areas as reported in Table 34 of Census Bureau [53]. We aggregated
these counts to be consistent with our MA definitions.

The shares of MSA land area, population, and employment contained in urbanized areas dis-
cussed in Section 3.3 are derived from Tables 48, 50–51 of Census Bureau [51] and Table 33 of
Census Bureau [52] and Census Bureau [53].

The Herfindahl–Hirschman Index (HHI) is calculated for 1989 and includes employment for
ten industrial sectors. These include Construction, Manufacturing, Transportation and Public
Utilities, Wholesale Trade, Retail Trade, Finance, Insurance, and Real Estate, Services, Civilian
Federal Government, State and Local Government, and a category, other, that consists primarily
of employment in the military, agriculture, and mining. The HHI is calculated at the MA level.
Wherever county data are missing for 1989, either data from the previous or following year are
used or MSA-level data are substituted when appropriate.

The percentage of population with a college degree or more education is derived from the 1990
Census American Fact Finder. Because these are MSA-level data, it was necessary to create a
weighted average of component MSAs for the special CMSAs we created; this was done using
1990 Census Bureau mid-year population estimates aggregated from county level to MSA. The
population data were also used to calculate our measure of patents per capita.

Our instrumental variables include a measure of the number of restaurants and museums and
crimes in 1989. These are derived from county-level data, as reported in County Business Pat-
terns, and aggregated to the MA level. They are converted to intensities by dividing by population
in 1989.

A.5. Research and development variables

The amount of academic R&D in each MSA is derived from the National Science Founda-
tion’s (NSF) “Academic Science and Engineering: R&D Expenditures,” as archived in the Web-
Caspar search engine at the NSF web site. Expenditures are averaged over the period 1987-1989
and are normalized by the total fall enrollment as reported in the Integrated Postsecondary Ed-
ucation Data System assembled by the National Center for Education Statistics and archived on
WebCaspar. S&E expenditures reported for a number of university systems were also allocated
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to particular campuses using advanced S&E degrees granted by those campuses. Expenditures
are built up from counties according to our MA definitions.

Data on the location and resources of the Federally Funded Research and Development Cen-
ters were provided to us by Ronald Meeks of the National Science Foundation.

Data on private R&D facilities were extracted from the 1989 edition of the Bowker Directory
of American Research and Technology [13]. They are matched to the SIC of the parent company
using the 1999 vintage of Compustat.

A.6. Trade secrecy index

We assigned the industry-specific effectiveness rating in Table 1 of Cohen, Nelson, and Walsh
[18] to two-digit or three-digit SIC industries. These ratings are a categorical response to a ques-
tion that asks for the proportion of product innovations for which trade secrets are effective in
preserving the resulting profits. For each MA, we compute a weighted average of the industry
ratings using as weights the shares of all private R&D facilities in the MA contained in those
industries.
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