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The Effects of Exposure to Better Neighborhoods 
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The Moving to Opportunity (MTO) experiment offered randomly 
selected families housing vouchers to move from high-poverty 
housing projects to lower-poverty neighborhoods. We analyze MTO’s 
impacts on children’s long-term outcomes using tax data. We find that 
moving to a lower-poverty neighborhood when young (before age 
13) increases college attendance and earnings and reduces single 
parenthood rates. Moving as an adolescent has slightly negative 
impacts, perhaps because of disruption effects. The decline in the 
gains from moving with the age when children move suggests that the 
duration of exposure to better environments during childhood is an 
important determinant of children’s long-term outcomes. (JEL I31, 
I38, J13, R23, R38)

Individuals who live in high-poverty areas fare worse than those who live in 
lower-poverty neighborhoods on a wide range of economic, health, and educa-
tional outcomes.1 Motivated by such disparities in outcomes across neighbor-
hoods, the Moving to Opportunity (MTO) experiment of the US Department of 
Housing and Urban Development offered a randomly selected subset of families 

1 See, for example, Jencks and Mayer (1990); Brooks-Gunn et al. (1993); Cutler and Glaeser (1997); Leventhal 
and Brooks-Gunn (2000); and Sampson, Morenoff, and Gannon-Rowley (2002).
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living in high-poverty housing projects subsidized housing vouchers to move to 
lower-poverty neighborhoods in the mid-1990s. The MTO experiment generated 
large differences in neighborhood environments for comparable families, providing 
an opportunity to evaluate the causal effects of improving neighborhood environ-
ments for low-income families (Ludwig et al. 2013).

Previous research evaluating the MTO experiment has found that moving to 
lower-poverty areas greatly improved the mental health, physical health, and sub-
jective well being of adults as well as family safety (e.g., Katz, Kling, and Liebman 
2001; Kling, Liebman, and Katz 2007; Clampet-Lundquist and Massey 2008; 
Ludwig et al. 2013). But these studies have consistently found that the MTO treat-
ments had no significant impacts on the earnings and employment rates of adults 
and older youth, suggesting that neighborhood environments might be less import-
ant for economic success.

In this paper, we revisit the MTO experiment and focus on its long-term impacts 
on children who were young when their families moved to better neighborhoods. 
Our analysis is motivated by recent evidence that the amount of time individuals 
spend in a given neighborhood during their childhood is a key determinant of that 
neighborhood’s effects on their long-term outcomes.2 Crowder and South (2011) 
and Wodtke, Harding, and Elwert (2011) show that the fraction of childhood spent 
in high-poverty areas is negatively correlated with outcomes such as high school 
completion. Chetty and Hendren (2015) study more than five million families that 
move across areas and find that neighborhoods have causal exposure effects on chil-
dren’s outcomes using quasi-experimental methods. In particular, every year spent 
in a better area during childhood increases college attendance rates and earnings in 
adulthood, so the gains from moving to a better area are larger for children who are 
younger at the time of the move.

In light of this evidence on childhood exposure effects, we test two hypotheses in 
the MTO data. First, we hypothesize that moving to a lower-poverty area improves 
long-term economic outcomes for children who were young at the point of ran-
dom assignment (RA). Second, we hypothesize that the gains from moving to a 
lower-poverty area decline with a child’s age at move. Prior work has not been able 
to study these issues because the younger children in the MTO experiment are only 
now old enough to be entering the adult labor market. We present new evidence on 
the impacts of MTO on children’s earnings, college attendance rates, and other out-
comes in adulthood by linking the MTO data to federal income tax returns.

The MTO experiment was conducted between 1994 and 1998 in five large US 
cities. The experimental sample included 4,604 families, who were randomly 
assigned to one of three groups: an experimental voucher group that was offered a 
subsidized housing voucher that came with a requirement to move to a census tract 
with a poverty rate below 10 percent, a Section 8 voucher group that was offered a 
standard subsidized housing voucher with no additional contingencies, and a control 
group that was not offered a voucher (but retained access to public housing).

2 The idea that the length of exposure to neighborhoods might matter has been recognized since Wilson (1987) 
and Jencks and Mayer (1990). Importantly, we focus here on exposure effects during childhood; as we discuss 
below, we find no evidence of exposure effects for adults.
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We begin our analysis by evaluating the impacts of MTO on young children, 
whom we define in our baseline analysis as those below age 13 at RA.3 These chil-
dren are eight years old on average at RA. Among these children, 48 percent of those 
in the experimental voucher group took up the voucher to move to a low-poverty 
area, while 66 percent of those in the Section 8 group took up the vouchers they 
were offered. Children growing up in the three groups experienced very different 
childhood environments. On average from the date of RA until age 18, children 
below age 13 at RA in the control group lived in census tracts with a mean poverty 
rate of 41 percent. Children whose families took up the experimental voucher lived 
in census tracts with 22 percentage point lower poverty rates than those in the con-
trol group on average until age 18. Those who took up the Section 8 voucher lived 
in census tracts with 12 percentage point lower poverty rates than the control group.

We estimate the treatment effects of growing up in these very different envi-
ronments by replicating the intent-to-treat (I T T) specifications used in prior work 
(e.g., Kling, Liebman, and Katz 2007), regressing outcomes in adulthood on indi-
cators for assignment to each of the treatment arms. We find that assignment to the 
experimental voucher group led to significant improvements on a broad spectrum 
of outcomes in adulthood for children who were less than age 13 at RA. Children 
assigned to the experimental voucher group before they turned 13 have incomes 
that are $1,624 higher on average relative to the control group in their mid-twenties 
( ​p < 0.05​). Given the experimental voucher take-up rate of 48 percent, this trans-
lates to a treatment-on-the-treated (TOT) estimate for those who took up the exper-
imental voucher of $3,477, a 31 percent increase relative to the control group mean 
of $11,270. Children assigned to the experimental voucher group before they turn 
13 are also significantly more likely to attend college and attend better colleges. 
The I T T effect on college attendance between the ages of 18–20 is a 2.5 percentage 
point (16 percent) increase relative to the control group mean attendance rate of 16.5 
percent. Finally, children assigned to the experimental voucher group before age 13 
also live in lower-poverty neighborhoods themselves as adults and are less likely to 
be single parents themselves (for females).4

Children whose families were assigned to the Section 8 voucher group before 
they turned 13 generally have mean outcomes between the control and experimental 
group means. For example, the TOT estimate for individual income is $1,723 for 
the Section 8 voucher relative to the control among children below age 13 at RA. 
This impact is 50 percent of the TOT estimate for the experimental voucher, which 
is consistent with the fact that the Section 8 voucher reduced mean neighborhood 
poverty rates by approximately half as much as the experimental voucher for those 
who took up the vouchers. Note that households in the Section 8 group could have 
chosen to make exactly the same moves as those in the experimental group. The 
fact that the experimental voucher had larger effects on children’s outcomes than 
the Section 8 voucher therefore suggests that actively encouraging families to move 

3 We limit our sample to children who are at least 21 by 2012, the last year for which we have data from tax 
returns. Because of this restriction, our “below age 13” sample only includes children who were between the ages of 
4 and 12 at random assignment. As we discuss below, we find similar results when defining “young children” using 
other cutoffs, e.g., those below age 12 or 14.

4 We define a mother as a “single parent” if she has a child whose father’s name is not listed on the child’s social 
security application, which is typically submitted at birth.
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to lower-poverty neighborhoods—either through counseling or by restricting their 
choice set—increases the impacts of housing vouchers on young children’s long-
term economic success.

The MTO treatments had very different effects on older children—those between 
13–18 at RA, who were 15 years old on average at that point. In most cases, we find 
statistically insignificant differences between mean outcomes in the three treatment 
arms among older children. The point estimates suggest that, if anything, moving 
to a lower-poverty neighborhood had slightly negative effects on older children’s 
outcomes. For example, the I T T impact of the experimental voucher is −$967 on 
individual income among children who were 13–18 at RA. One potential explana-
tion for these negative impacts at older ages is a disruption effect: moving to a very 
different environment, especially as an adolescent, could disrupt social networks 
and have other adverse effects on child development (Coleman 1988; Wood et al. 
1993; South, Haynie, and Bose 2007).5

We explore the robustness of these findings by estimating models that interact age 
at RA linearly with the treatment indicators. We find robust evidence that the gains 
from moving to lower-poverty areas decline with the child’s age at move, suggesting 
that every extra year of exposure to a low-poverty environment during childhood is 
beneficial. We do not find any clear evidence of a “critical age” below which chil-
dren must move to benefit from a better neighborhood, although one cannot obtain 
very precise estimates of the age profile of exposure effects from the MTO data 
because of the small sample sizes at each child age.

Putting the results together, the effects of moving to a better neighborhood on 
children’s long-term economic outcomes can be explained by a simple model fea-
turing a disruption cost of substantially changing one’s neighborhood environment 
coupled with benefits that are proportional to the amount of exposure to a lower-pov-
erty environment during childhood. The exposure effects outweigh the disruption 
cost for children who move when young, but not for children who move at older 
ages. Although our findings are consistent with such a model of exposure effects, the 
MTO experimental design cannot be used to conclusively establish that childhood 
exposure to a better environment has a causal effect on long-term outcomes because 
the ages at which children move are perfectly correlated with their length of expo-
sure to a lower-poverty neighborhood. As a result, we cannot distinguish differences 
in disruption effects by age at the time of a move from an age-invariant disruption 
cost coupled with an exposure effect. Moreover, the treatment effects for families 
with young versus old children could differ because the set of families who took up 
the voucher and the areas to which they moved might vary between the two groups. 
Nonetheless, regardless of the underlying mechanisms, the experimental results 
are adequate to conclude that providing subsidized housing vouchers to move to 
lower-poverty areas produces larger benefits for younger children.

5 Importantly, these disruption costs appear to be a function of where a family moves rather than a fixed cost of 
moving to a different home. Most families in both the control and treatment groups moved several times while their 
children were growing up (Ludwig et al. 2013). However, families who moved using the subsidized housing vouch-
ers—especially the experimental vouchers—moved to very different neighborhoods that were further away from 
the housing projects where they started. Disruption costs are presumably larger for children who move to a very 
different area, e.g., because of a loss of social networks (Coleman 1988). Consistent with this explanation, TOT 
estimates show a somewhat larger adverse impact of MTO moves on older children in the experimental voucher 
group as compared to the Section 8 group.
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We find that the MTO treatments had little or no impact on adults’ economic 
outcomes, consistent with prior work (e.g., Ludwig et al. 2013).6 The experimen-
tal voucher TOT estimate on individual earnings is −$734 (a 4.7 percent reduc-
tion) and the upper bound of the 95 percent confidence interval is a 12 percent 
increase, well below the estimated impacts for young children. We find no evidence 
of exposure effects among adults, in contrast with the observational correlations 
reported by Clampet-Lundquist and Massey (2008). The earnings impacts for adults 
do not increase over time after RA, despite the fact that cumulative exposure to 
lower-poverty areas rose significantly.

Prior studies of MTO have detected heterogeneity in short-run and medium-term 
treatment effects by child gender and experimental site (e.g., Kling, Liebman, and 
Katz 2007). We find no systematic differences in the treatment effects of MTO on 
children’s long-term outcomes by gender, race, or site. In particular, the point esti-
mates of the effect of the experimental voucher on earnings are positive for all five 
experimental sites, for whites, blacks, and Hispanics, and for boys and girls for 
children below the age of 13 at RA. The corresponding point estimates are almost 
all negative for children above the age of 13 at RA. Most notably, we find robust, 
statistically significant evidence that the experimental voucher improved long-term 
outcomes for (young) boys, a subgroup where prior studies found little evidence of 
medium-term gains.

Previous explorations of heterogeneity in treatment effects in the MTO data raise 
concerns that our results—which essentially explore heterogeneity in the new dimen-
sion of child’s age at move—are an artifact of multiple hypothesis testing. A post-
hoc analysis of a randomized experiment will generate some p-values that appear 
to be “statistically significant” (e.g., ​p < 0.05​) purely by chance if one examines a 
sufficiently large number of subgroups. To address this concern, we test the omnibus 
null hypothesis that the treatment effects for the main subgroups studied in MTO 
research to date (based on gender, race, site, and age) are all zero using parametric 
F-tests and a nonparametric permutation test. We reject the null hypothesis of zero 
treatment effects in all subgroups with ​p < 0.05​ for most outcomes using F-tests of 
interaction terms of treatment group and subgroup indicators. The permutation test 
yields ​p < 0.01​ for the null hypothesis that the MTO treatments had no effect on 
any of the outcomes we study for children below 13 at RA, adjusting for multiple 
hypothesis testing across all the subgroups. The results imply that the significant 
treatment effects we detect for younger children are unlikely to be an artifact of 
analyzing multiple subgroups. In addition, we returned to the MTO data with a pre-
specified hypothesis that we would find larger impacts for younger children, based 
on the quasi-experimental evidence in Chetty and Hendren (2015). The fact that the 
experimental results closely match the quasi-experimental evidence makes it less 
likely that these results are spuriously generated by multiple hypothesis testing.

We conclude that the Moving to Opportunity experiment generated substantial 
gains for children who moved to lower-poverty neighborhoods when they were 
young. We estimate that moving a child out of public housing to a low-poverty area 

6 Our findings regarding the impacts of MTO on children are also consistent with prior research. If we restrict 
ourselves to the data available in prior work (up to 2008) and do not split children by age at move, we detect no 
impact of the MTO treatments on children’s economic outcomes.
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when young (at age eight on average) using an MTO-type experimental voucher 
will increase the child’s total lifetime earnings by about ​$302,000​. This is equivalent 
to a gain of $99,000 per child moved in present value at age eight, discounting future 
earnings at a 3 percent interest rate. The increased earnings of children ultimately 
leads to significant benefits to taxpayers as well. Children whose families took up 
experimental vouchers before they were 13 pay an extra $394 per year in federal 
income taxes during their mid-twenties. If these gains persist in subsequent years of 
adulthood, the additional tax revenue obtained from these children will itself offset 
the incremental cost of the experimental voucher treatment relative to providing 
public housing. Thus, our findings suggest that housing vouchers which (i) require 
families to move to lower-poverty areas and (ii) are targeted at low-income families 
with young children can reduce the intergenerational persistence of poverty and 
ultimately save the government money.

The paper is organized as follows. Section I summarizes the key features of the 
MTO experiment. Section II describes the data sources and reports summary statis-
tics and tests for balance across the experimental groups. We present our main results 
in Section III. In Section IV, we reconcile our new findings with prior research on 
MTO. Section V presents a cost-benefit analysis and discusses policy implications. 
We conclude in Section VI by interpreting our findings in the context of the broader 
literature on neighborhood effects.

I.  The Moving to Opportunity Experiment

In this section, we briefly summarize the key features of the MTO experiment; 
see Sanbonmatsu et al. (2011) for a more comprehensive description. The MTO 
randomized housing mobility demonstration, conducted by the US Department of 
Housing and Urban Development (HUD), enrolled 4,604 low-income families liv-
ing in five US cities (Baltimore, Boston, Chicago, Los Angeles, and New York) 
from 1994 to 1998. Families were eligible to participate in MTO if they had chil-
dren and resided in public housing or project-based Section 8 assisted housing in 
high-poverty census tracts (those with a 1990 poverty rate of 40 percent or more).

Families were randomized into three groups: (i) the experimental group, which 
received housing vouchers that subsidized private-market rents and could initially 
(for the first year) only be used in census tracts with 1990 poverty rates below 10 per-
cent; (ii) the Section 8 group, which received regular housing vouchers without any 
MTO-specific relocation constraint; and (iii) a control group, which received no 
assistance through MTO. Those in the experimental group also received additional 
housing-mobility counseling from a local nonprofit organization. The experimen-
tal vouchers became regular Section 8 vouchers after a year and were no longer 
restricted to low-poverty census tracts. Families assigned to the experimental and 
Section 8 groups had 4–6 months to lease an apartment and use their vouchers.

Families in all three groups were required to contribute 30 percent of their annual 
household income toward rent and utilities. Those assigned to the experimental or 
Section 8 voucher groups received housing vouchers that covered the difference 
between their rent and the family’s contribution, up to a maximum amount known 
as the Fair Market Rent, defined as the fortieth percentile of rental costs in a metro 
area. Families remained eligible for these vouchers (or public housing projects) 
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indefinitely as long as their income was below 50 percent of the median income in 
their metro area.

The proportion of individuals randomly assigned to the three groups at each 
site was changed during the course of the experiment because take-up of the MTO 
vouchers turned out to differ from projections. All the statistics reported in this 
paper use sampling weights in which individuals are weighed by the inverse of their 
probability of assignment to their treatment group to account for changes in the ran-
dom-assignment ratios over time.7

II.  Data

We draw information from two datasets: HUD files on the MTO participants and 
federal income tax records. This section describes the two data sources and key vari-
able definitions. It then provides descriptive statistics and tests for balance across the 
MTO treatment groups.

A. MTO Data

The MTO dataset contains information on 4,604 households and 15,892 individ-
uals who participated in the experiment. This study examines the impacts of MTO 
on outcomes typically observed at age 21 or older. Since the last year in the tax data 
is currently 2012, we restrict the MTO sample to the 13,213 individuals who are 
21 or older in 2012 (those born in or before 1991). We focus much of our analysis 
on MTO children, defined as individuals who were 18 years old or younger at the 
time of RA and residing at that time in a household that participated in MTO. There 
are 11,276 children in the MTO data, of whom 8,603 (76 percent) were born in or 
before 1991.

For each MTO participant, we use two sets of information from the MTO dataset. 
First, we obtain information on individual and household background characteris-
tics from the MTO Participant Baseline Survey. The baseline survey was adminis-
tered to each MTO household head at the time of program enrollment (prior to RA). 
The survey provides demographic and socioeconomic background information on 
each household member (adults and children) including information on children’s 
school experiences, household criminal victimization, reasons for wanting to partic-
ipate in MTO, and household income and transfer receipt. See Sanbonmatsu et al. 
(2011) for more detailed information on the background characteristics of the MTO 
participants and the baseline survey.

Second, we obtain yearly information on the residential neighborhood (census 
tract) for each MTO participant using address history data from the MTO long-term 
survey conducted in 2008–2010, as in Sanbonmatsu et al. (2011). We estimate cen-
sus tract poverty rates in each year by interpolating census tract poverty rates using 
the 1990 and 2000 censuses and the 2005–2009 American Community Surveys. We 

7 See Orr et al. (2003) for the details on the variation in random-assignment ratios over time and the construction 
of the MTO sample weights. The weights prevent time or cohort effects from confounding the results. The weights 
we use are the same as the weights used for the analysis of administrative data in past MTO work.
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use this information to construct a measure of each MTO child’s exposure to poverty 
(mean tract poverty rate) from the time of RA to age 18.

B. Tax Data

We link the MTO data to data from federal income tax records spanning 1996 to 
2012.8 HUD collected social security numbers (SSNs) prior to RA for 90 percent 
(11,892) of the individuals who participated in the MTO experiment and were born 
in or before 1991. The MTO records were linked to the tax data by SSN. Of the 
MTO records with a valid SSN, 99 percent (11,780) were successfully linked to 
the tax data. To protect confidentiality, individual identifiers were removed from the 
linked dataset prior to the statistical analysis.

The tax data include both income tax returns (1040 forms) and third-party infor-
mation returns (e.g., W-2 forms), which give us information on the earnings of those 
who do not file tax returns as well as data on other outcomes, such as college atten-
dance. Here, we define the key variables we use in our analysis. We measure all 
monetary values in real 2012 dollars, adjusting for inflation using the Consumer 
Price Index (CPI-U).

Income.—Our primary measure of income is “individual earnings.” Individual 
earnings is defined as the sum of income from W-2 forms filed by employers (summed 
across all W-2s for the individual in each year) and “non-W-2 earnings.” Non-W-2 
earnings is defined as adjusted gross income on form 1040 minus own and spouse’s 
W-2 earnings, UI benefits, and SSDI payments, and is divided by two for married 
households. Hence, non-W-2 earnings reflects income from self-employment and 
other activities not captured on W-2s. Non-W-2 earnings is recoded to zero if neg-
ative and is defined as zero for non-filers. If an individual has no tax return and no 
W-2 earnings, individual earnings is coded as zero.

We also report effects on household income. For those who file tax returns, 
we define household income as adjusted gross income (as reported on the 1040 
tax return) plus tax-exempt interest income and the nontaxable portion of Social 
Security and Disability benefits. In years when an individual does not file a tax 
return, we define household income as the sum of the individual’s wage earnings 
(reported on form W-2), unemployment benefits (reported on form 1099-G), and 
gross social security and disability benefits (reported on form SSA-1099).9

College Attendance.—We define college attendance at age ​a​ as an indicator 
for having a 1098-T form filed on one’s behalf during the calendar year in which 
the child turns age ​a​. Title IV institutions (all colleges and universities as well as 
vocational schools and other post-secondary institutions eligible for federal stu-
dent aid) are required to file 1098-T forms that report tuition payments or scholar-
ships received for every student. These 1098-T data are available from 1999–2012. 

8 Here, and in what follows, the year refers to the tax year (i.e., the calendar year in which the income is earned).
9 For non-filers, our definition of “household income” does not include the spouse’s income. This is likely to 

be of minor consequence because the vast majority of non-filers in the United States who are not receiving Social 
Security benefits are single (Cilke 1998, Table I).
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Because the 1098-T forms are filed directly by colleges independent of whether an 
individual files a tax return, we have records on college attendance for almost all 
children.10 Comparisons to other data sources indicate that 1098-T forms capture 
college enrollment quite accurately overall (Chetty, Friedman, and Rockoff 2014, 
Appendix B). In particular, the correlation between enrollment counts based on 
1098-T forms and enrollment counts in the IPEDS dataset from the Department of 
Education exceeds 0.95.

College Quality.—Using data from 1098-T forms, Chetty, Friedman, and Rockoff 
(2014) construct an earnings-based index of “college quality” using the mean indi-
vidual wage earnings at age 31 of children born in 1979–1980 based on the college 
they attended at age 20. For those not enrolled in any college at age 20, the index 
equals the mean earnings at age 31 of all US residents not enrolled in college at age 
20. We define college quality at age ​a​ based on the college in which the child was 
enrolled at age ​a​ (inflated to 2012 dollars using the CPI-U).

Neighborhood Characteristics in Adulthood.—We measure the characteristics 
of the neighborhoods where children live in adulthood using information on zip 
codes from the tax data.11 We assign each individual a zip code in each year using 
a sequential algorithm starting with the location from which the individual files his 
tax return (form 1040). If the individual does not file a tax return, we obtain their 
zip code from form W-2, followed by other information returns (e.g., 1099s). We 
use this information to measure the following characteristics of the individual’s zip 
code using data from the 2000 census: poverty share (share of households below 
the poverty line), mean income (aggregate income in the zip code divided by the 
number of individuals 16–64 years old), black share (number of people who are 
black alone divided by total population in 2000), and single mother share (number 
of households with female heads and no husband present with own children present 
divided by the total number of households with own children present).

Marital Status and Fertility.—We define an individual as married if he or she files 
a tax return as a married individual in a given year. We measure fertility patterns 
using data through June 2014 from the Kidlink (DM-2) database provided to the 
IRS by the Social Security Administration, which contains information from appli-
cations for SSNs. SSN applications request the SSN of both the mother and father 
(if present), allowing us to link parents to their children.12 We define a woman as 
having a birth if she had a child before June 2014 and having a teenage birth if she 
had a child between the ages of 13 and 19. Most people apply for SSNs for their 
children at birth because an SSN is required to claim a child as a dependent on tax 
returns and for various other purposes. We therefore define an indicator for whether 

10 Colleges are not required to file 1098-T forms for students whose qualified tuition and related expenses are 
waived or paid entirely with scholarships or grants. However, the forms are typically available even for such cases, 
presumably because of automated reporting to the IRS by universities. Approximately 6 percent of 1098-T forms 
are missing from 2000–2003 because the database contains no 1098-T forms for some small colleges in these years.

11 The tax data do not currently contain information on census tracts, so we are forced to use a broader zip code 
measure when analyzing children’s location in adulthood.

12 The total count of births in the DM-2 data differ from CDC vital statistics counts by less than 2 percent from 
1987–2006, but the DM-2 data misses approximately 10 percent of births starting in 2007.
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the father was present at a child’s birth based on whether a father is listed on the 
child’s SSN application.

Tax Filing and Taxes Paid.—We define tax filing as an indicator for filing a 1040 
tax return and total taxes paid as the total tax field from form 1040 for filers and total 
taxes withheld on W-2 forms for non-filers.

C. Balance Tests and Summary Statistics

Prior research has documented that baseline characteristics are balanced between 
the treatment and control groups for both MTO adults and children, as would be 
expected in an experiment with random assignment (Kling, Liebman, and Katz 
2007). Here, we replicate these balance tests on the linked MTO-tax data to ensure 
that we retain balance in the subgroup that we are able to link to the tax data.

In our core analysis, we split children into two groups: those below age 13 at 
RA and those between ages 13–18 at RA. Table 1 reports summary statistics and 
balance tests for selected baseline covariates for these two groups. Online Appendix 
Table 1A replicates Table 1 for the broader set of 52 baseline covariates used in 
the MTO interim and final impact evaluations (Kling, Liebman, and Katz 2007; 
Sanbonmatsu et al. 2011).

We match 86.4 percent of younger children and 83.8 percent of the older MTO 
children to the tax data. The match rates do not differ significantly between the control 
and treatment groups. This is to be expected because the SSNs that we use to link the 
MTO data to the tax data were collected prior to random assignment and we success-
fully link 99 percent of the individuals with valid SSNs to the tax data. Thus, there is 
virtually no scope for differential attrition across the three treatment arms in the linked 
dataset. Consistent with the lack of differential attrition, the distribution of baseline 
covariates appears to be balanced in the linked MTO-tax data. Thirteen of the 196 
differences reported in online Appendix Table 1A are significant with ​p < 0.05​ and 2 
of the 196 are significant with ​p < 0.01​ based on t-tests that do not adjust for multiple 
comparisons, in line with what one would expect under random assignment.

The summary statistics in Table 1 show that families who participated in MTO 
were quite economically disadvantaged. Approximately one-third of the MTO 
household heads had completed high school, only one quarter were employed, 
three-quarters were receiving public assistance (AFDC/TANF), more than half had 
never been married, and a quarter had been teenage parents at the point of ran-
dom assignment. Around three-quarters of applicants reported getting away from 
gangs and drugs as one of the most important reasons for enrolling in MTO, and 
over 40 percent of the households had been victims of crime in the previous five 
years. The vast majority of the household heads were African-American or Hispanic 
females. Among the older children (ages 13–18 at RA), nearly 20 percent had been 
suspended or expelled from school in the past two years.

Online Appendix Table 1B reports summary statistics on children’s long-term 
outcomes. Mean individual earnings is $11,739 at age 24, rising to $14,269 at age 
28. College attendance rates are 18–19 percent over the ages 19–21. Roughly 22 per-
cent of the females give birth to a child as a teenager. On average, 63 percent of the 
sample files a tax return (form 1040) in any given year after they turn 24.
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III.  Analysis and Results

In our core analysis, we split the 7,340 children in our linked analysis sample 
into two groups: (i) children younger than adolescence (less than 13 years) at RA 
and (ii) adolescent children (those 13 to 18 years old) at RA.13 The children in the 

13 MTO moves typically occurred within six months of RA, so a child’s age at RA is essentially the child’s age 
at the time of the move.

Table 1—Summary Statistics and Balance Tests for Children in MTO-Tax Data Linked Sample

< Age 13 at random 
assignment

Age 13–18 at random 
assignment

  Control 
group 
mean

Exp. 
versus
control

Sec. 8 
versus 
control

Control 
group 
mean

Exp. 
versus 
control

Sec. 8 
versus 
control

  (1) (2) (3) (4) (5) (6)

Linked to tax data (%) 86.4 −0.8 −0.4 83.8 1.5 −0.1
    (1.4) (1.5)    (2.0) (2.2)
Child’s age at random assignment 8.2 −0.1 −0.0  15.1 0.1 −0.1
    (0.1) (0.1)   (0.1) (0.1)
Household head completed high school (%) 34.3 4.2* 0.4 29.5 5.0 0.7

  (2.4) (2.6)   (3.1) (3.3)
Household head employed (%) 23.8 1.0 −2.2 25.3 3.0 −0.4
    (2.1) (2.2)   (2.9) (3.0)
Household head gets AFDC/TANF (%) 79.5 0.6 1.8 75.0 −0.8 −1.0
    (1.9) (2.0)   (2.9) (3.0)
Household head never married (%) 65.1 −4.3* −3.1 53.0 −3.1 −6.3*
    (2.3) (2.6)   (3.2) (3.4)
Household head had teenage birth (%) 28.6 −0.9 −0.3 29.1 −3.6 −2.5
    (2.2) (2.5)   (2.9) (3.2)
Primary or secondary reason for move is to get away 78.1 −1.8 −4.4* 77.7 3.1 −0.9
  from gangs or drugs (%)   (2.1) (2.4)   (2.6) (2.9)
Household victims of crime in past five years (%) 41.3 2.5 0.9 44.8 1.3 −3.3

  (2.4) (2.7)   (3.3) (3.5)
Household head African American (%) 66.9 −0.4 −1.4 63.9 −1.9 −5.9**
    (2.0) (2.1)   (2.7) (2.8)
Household head Hispanic (%) 29.4 −0.3 −0.5   31.1 0.6
    (2.0) (2.1)    (2.7) (2.7)
Child susp./expelled in past two years (%) 4.9 0.7 0.4 17.6 1.0 0.4
    (0.8) (0.9)   (2.0) (2.2)

Children in linked MTO-tax data 1,613 1,969 1,427 686 959 686

Notes: This table presents summary statistics and balance tests for match rates and a subset of variables collected 
prior to randomization; online Appendix Table 1A replicates this table for all 52 control variables we use in our 
analysis. The estimates in the first row (fraction linked to tax data) are based on all children in the MTO data 
who were born in or before 1991. The estimates in the remaining rows use the subset of these observations suc-
cessfully linked to the tax data. Columns 1–3 include children below age 13 at random assignment; columns 4–6 
include those above age 13 at random assignment. Columns 1 and 4 show the control group mean for each variable. 
Columns 2 and 5 report the difference between the experimental voucher and control group, which we estimate 
using an OLS regression (weighted to adjust for differences in sampling probabilities across sites and over time) of 
each variable on indicators for being assigned to the experimental voucher group, the Section 8 voucher group, as 
well as indicators for randomization site. Columns 3 and 6 report the coefficient for being assigned to the Section 
8 group from the same regression. The estimates in columns 2–3 and 5–6 are obtained from separate regressions. 
Standard errors, reported in parentheses, are clustered by family. The final row lists the number of individuals in the 
control, experimental, and Section 8 groups in the linked MTO-tax data sample.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.
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younger group were 8.2 years old at RA on average, while those in the older group 
were 15.1 years old on average (Table 1). This split at age 13 yields approximately 
the same number of observations for the younger and older groups for analyses of 
outcomes such as earnings in early adulthood. We report estimates with different 
age cutoffs and use linear interaction models to evaluate the robustness of the results 
in Section IIIG.

Within each of these two groups, we estimate “intent-to-treat” (I T T) effects of the 
MTO treatments, which are essentially differences between treatment and control 
group means. Following the standard approach used in prior evaluations of MTO 
(e.g., Kling, Liebman, and Katz 2007), we estimate I T T effects on an outcome (  ​y​) 
using OLS regression specifications of the form

(1)	​ ​y​ i​​  =  α + ​β ​ E​ I T T​ Ex ​p​ i​​ + ​β ​ S​ I T T​ S​8​i​​ + γ ​X​i​​ + δ​s​i​​ + ​ϵ​i​​,​

where ​Exp​ and ​S8​ are indicator variables for being randomly assigned to the exper-
imental and Section 8 groups respectively, ​X​ is a vector of baseline covariates, and ​
s​ is a set of indicators for randomization site. All of our regressions are weighted to 
adjust for differences in sampling probabilities (randomization rates into the differ-
ent treatment groups) across sites and over time. We cluster the standard errors by 
family (allowing for common error components across siblings) because random-
ization occurred at the family level.

In our baseline specifications, we include randomization site dummies ​s​ (since 
randomization occurred within sites) but no additional covariates ​X​ , as the choice 
of which covariates to include is somewhat arbitrary. In supplemental specifica-
tions, we evaluate the sensitivity of our estimates to the inclusion of the 52 baseline 
covariates shown in online Appendix Table 1A. Including these additional covari-
ates affects the point estimates modestly and has little impact on the qualitative 
conclusions, as expected given that the covariates are balanced across the treatment 
groups.14

The estimates of ​​β ​ E​ I T T​​ and ​​β ​ S​ I T T​​ in (1) identify the causal impact of being offered a 
voucher to move through MTO. Since not all the families offered vouchers actually 
took them up, these I T T estimates understate the causal effect of actually moving to 
a different neighborhood. Following Kling, Liebman, and Katz (2007), we estimate 
the impacts of moving through MTO—the impact of “treatment on the treated” 
(TOT)—by instrumenting for MTO voucher take-up with the treatment assignment 
indicators. Formally, we estimate specifications of the form

(2)	​ ​y​ i​​  = ​ α​T​​ + ​β ​ E​ TOT​ TakeEx​p​ i​​ + ​β ​ S​ TOT​ TakeS​8​i​​ + ​γ​T​​ ​X​i​​ + ​δ​T​​ ​s​i​​ + ​ϵ​ i​ T​​,

where ​TakeExp​ and ​TakeS8​ are indicators for taking up the experimental and Section 
8 vouchers, respectively. Since ​TakeExp​ and ​TakeS8​ are endogenous variables, we 
instrument for them using the randomly-assigned MTO treatment group indicators 
(​Exp​ and ​S8​) and estimate (2) using two-stage least squares. Under the assumption 

14 Replicating the covariate balance tests discussed in Section IIC on the estimation subsamples (e.g., the subset 
of children for whom we observe earnings at age 24) yields very similar results to those reported in online Appendix 
Table 1A.
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that MTO voucher offers only affect outcomes through the actual use of the voucher 
to lease a new residence, ​​β​ E​ TOT​​ and ​​β​ S​ TOT​​ can be interpreted as the causal effect of 
taking up the experimental and Section 8 vouchers and moving to a lower-poverty 
neighborhood (Angrist, Imbens, and Rubin 1996).15

This section reports estimates of (1) and (2) for various outcomes ​​y​ i​​​ . We begin 
by analyzing the “first-stage” effects of the MTO experiment on the characteristics 
of the neighborhoods where children grew up. We then turn to impacts on children’s 
outcomes in adulthood, such as earnings and college attendance rates.

A. Voucher Take-Up and Neighborhood Characteristics during Childhood

Table 2 shows the effects of the MTO treatments on voucher take-up rates and 
poverty rates in the neighborhoods where children were raised. Panel A considers 
younger children (below 13 at RA), while panel B considers older children (between 
ages 13–18 at RA). The estimates in Table 2 include no controls other that random-
ization site indicators; online Appendix Table 2 replicates Table 2 controlling for the 
baseline covariates listed in online Appendix Table 1A and shows that the estimates 
are similar.

Column 1 of Table 2 reports estimates of the specification in (1) with an indica-
tor for taking up a housing voucher as the dependent variable ​​y​ i​​​. The control group 
mean is zero for this outcome because those in the control group were not offered 
vouchers. Among younger children, 48 percent who were assigned to the exper-
imental group took up the voucher they were offered. 66 percent of those in the 
Section 8 group took up the less restrictive voucher that they were offered. The 
corresponding take-up (or “compliance”) rates were slightly lower among families 
with older children, at 40 percent and 55 percent. Families in the treatment groups 
who chose to take up the vouchers were also more likely to have been dissatisfied 
with their current apartment and indicate they would be very likely to be able to find 
a new apartment (Kling, Liebman, and Katz 2007).16

Families who took up the MTO housing vouchers moved to a variety of different 
neighborhoods. Online Appendix Table 1C lists the most common destinations in 
each of the five sites. For example, many MTO participants in New York were living 
in the Martin Luther King (MLK) Towers, a housing development in Harlem, at the 
point of RA. Many families who took up experimental vouchers moved to Wakefield 
in the North Bronx (near the Westchester County border), about ten miles north 
of the MLK Towers. Several families who took up Section 8 vouchers moved to 
Soundview in the Central Bronx, about six miles north of the MLK Towers.

We characterize the neighborhoods to which MTO families moved more system-
atically by measuring the impacts of the MTO treatments on neighborhood poverty 
rates. Column 2 reports I T T estimates of impacts on poverty rates in the census 

15 The I T T estimates rely only on the assumption of random assignment, which is guaranteed by the experimen-
tal design. The TOT estimates rely on the additional (untestable) assumption that being offered an MTO voucher 
had no effect on those who did not take it up.

16 One might be concerned that when MTO household heads (parents) moved, their children may have stayed 
behind in the old neighborhood with relatives or friends. In practice, virtually all children moved along with their 
parents. Approximately 95 percent of both younger and older children were still living with their parents one year 
after RA in the control group. The fraction living with their parents is, if anything, slightly higher in the treatment 
groups one year post-RA.
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tract where the child lived one year after random assignment using the specifica-
tion in (1). The mean control group family was living in a very distressed census 
tract one year after RA, with a 50 percent poverty rate—2.92 standard deviations 
(SD) above the national average in the 2000 census national tract-poverty distribu-
tion. The MTO treatments led to large reductions in neighborhood poverty for both 
younger and older children. For younger children, the MTO voucher offers reduced 
the census-tract poverty rates in the experimental and Section 8 groups by 17 and 
15 percentage points (pp). The I T T estimates of reductions in poverty rates are 
slightly smaller for the older children, at 14 and 12 pp respectively. This is because 
the voucher take-up rate was slightly lower among families with older children, as 
shown in column 1.

Table 2—First-Stage Impacts of MTO on Voucher Take-Up  
and Neighborhood Poverty Rates (Percentage Points)

Housing 
voucher 
take-up 

Poverty rate
 in tract one year 

post- RA 

 
Mean poverty rate in tract 

post-RA to age 18 

 
Mean poverty rate in zip 

post-RA to age 18 

ITT TOT   ITT TOT   ITT TOT
  (1) (2) (3)   (4) (5)   (6) (7)

Panel A. Children < age 13 at random assignment          
Exp. versus control 47.66*** −17.05*** −35.96***  −10.27*** −21.56***  −5.84*** −12.23***
  (1.653) (0.853) (1.392)   (0.650) (1.118)   (0.425) (0.752)
Sec. 8 versus control 65.80*** −14.88*** −22.57***  −7.97*** −12.06***  −3.43*** −5.17***
  (1.934) (0.802) (1.024)   (0.615) (0.872)   (0.423) (0.622)
                   
Observations 5,044 4,958 4,958   5,035 5,035   5,035 5,035

Control group mean 0 50.23 50.23   41.17 41.17   31.81 31.81
                   
Panel B. Children age 13–18 at random assignment        
Exp. versus control 40.15*** −14.00*** −34.70***  −10.04*** −24.66***  −5.51*** −13.52***
  (2.157) (1.136) (2.231)   (0.948) (1.967)   (0.541) (1.113)
Sec. 8 versus control 55.04*** −12.21*** −22.03***  −8.60*** −15.40***  −3.95*** −7.07***
  (2.537) (1.078) (1.738)   (0.920) (1.530)   (0.528) (0.921)
                   
Observations 2,358 2,302 2,302   2,293 2,293   2,292 2,292

Control group mean 0 49.14 49.14   47.90 47.90   35.17 35.17

Notes: Columns 1, 2, 4, and 6 report ITT estimates from OLS regressions (weighted to adjust for differences in sam-
pling probabilities across sites and over time) of an outcome on indicators for being assigned to the experimental 
voucher group and the Section 8 voucher group as well as randomization site indicators. Columns 3, 5, and 7 report 
TOT estimates using a 2SLS specification, instrumenting for voucher take-up with the experimental and Section 8 
assignment indicators. Standard errors, reported in parentheses, are clustered by family. Panel A restricts the sam-
ple to children below age 13 at random assignment; panel B includes children between age 13 and 18 at random 
assignment The estimates in panels A and B are obtained from separate regressions. The dependent variable in col-
umn 1 is an indicator for the family taking up an MTO voucher and moving. The dependent variable in columns 2 
and 3 is the census tract-level poverty rate one year after random assignment. The dependent variable in columns 
4–7 is the duration-weighted mean poverty rate in the census tracts (columns 4 and 5) and zip codes (columns 6 
and 7) where the child lived from random assignment till age 18. The sample in this table includes all children born 
before 1991 in the MTO data for whom an SSN was collected prior to RA because we were unable to link the MTO 
tract-level location information to the tax data. This sample is nearly identical our linked analysis sample because 
99.1 percent of the children with nonmissing SSNs are matched to the tax data. The duration-weighted poverty rate 
is constructed using information on the addresses where the youth lived from random assignment up to their 18th 
birthday, weighted by the amount of time spent at each address. Census tract poverty rates in each year are inter-
polated using data from the 1990 and 2000 decennial censuses as well as the 2005–2009 American Community 
Survey, as in Sanbonmatsu et al. (2011); zip code poverty rates are from census 2000 only and are not interpolated.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.
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Column 3 of Table 2 reports TOT estimates on poverty rates—i.e., the change in 
poverty rates for families that actually took up the voucher—using the specification 
in (2). The estimates in this column are essentially the I T T estimates reported in col-
umn 2 divided by the impacts on voucher take-up reported in column 1, which is the 
first stage of the 2SLS regression used to estimate (2).17 Among younger children, 
those who moved using the experimental voucher live in neighborhoods with a 36 pp 
lower poverty rate than those in the control group one year after random assignment. 
Those who moved with the Section 8 voucher live in neighborhoods with a 23 pp 
lower poverty rate. The TOT impacts are very similar for older children.

We focus on the effects of the MTO treatments on poverty rates because the 
experimental vouchers were targeted based on poverty rates and poverty rates are 
the most common measure of neighborhood quality in the literature on neighbor-
hood effects (Sampson, Morenoff, and Gannon-Rowley 2002). Prior MTO research 
(Kling, Liebman, and Katz 2007; Ludwig et al. 2012) has shown that the mean 
neighborhood poverty rate experienced post-RA provides a reliable linear sum-
mary index of neighborhood quality (treatment dosage) for explaining variation 
in MTO treatment impacts by site and treatment group for both MTO adults and 
children. However, it is important to note that the MTO treatments changed neigh-
borhood characteristics in several other dimensions as well. The MTO treatment 
groups lived in neighborhoods with more-educated residents and a lower share of 
single parent households. MTO treatment group households—especially those in 
the experimental group—experienced large and persistent increases in neighbor-
hood safety, neighborhood satisfaction, and housing quality relative to control group 
families (Sanbonmatsu et al. 2011). The MTO treatments also modestly improved 
post-random assignment school quality, but these improvements were substantially 
smaller than the improvements in residential neighborhood quality (Fryer and Katz 
2013). The MTO treatments had more modest impacts in reducing neighborhood 
racial segregation (percent minority) than neighborhood economic segregation 
(Ludwig et al. 2013). The treatment effects we report in this paper should thus be 
interpreted as the effect of changing a bundle of neighborhood attributes rather than 
any one feature of neighborhood environments.18

The effects of the MTO treatments on neighborhood conditions attenuate over 
time because many control families moved out of high-poverty public housing proj-
ects and some families in the MTO treatment groups moved back to higher-poverty 
areas. Nevertheless, children in the treatment groups experienced substantially dif-
ferent neighborhood environments on average during their childhood. Column 4 
of Table 2 shows that on average from the point of RA until age 18, children in the 
experimental voucher group lived in areas with approximately 10 pp lower poverty 
rates than those in the control group. Children in the Section 8 group lived in areas 
with approximately 8 pp lower poverty rates than those in the control group. The 
corresponding TOT effects, shown in column 5, are a 22–25 pp reduction in mean 

17 The correspondence is not exact because the sample used in column 1 differs slightly from that in column 3, 
as post-RA locations are not available for all families.

18 Because all of these neighborhood characteristics are highly correlated with each other, it is difficult to 
disentangle which attributes of neighborhoods are most predictive of children’s success in the MTO data. The 
quasi-experimental estimates of neighborhood effects reported in Chetty and Hendren (2015) are better suited to 
studying this question because they are more precise and cover all areas of the United States.
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poverty rates for those who took up the experimental voucher and a 12–15 pp reduc-
tion in mean poverty rates for those who took up the Section 8 voucher. Thus, the 
impacts of MTO-induced moves on the average neighborhood poverty experienced 
during childhood are about twice as large for the experimental group as for the 
Section 8 group.

Columns 6 and 7 of Table 2 show I T T and TOT impacts on mean zip code–
level poverty rates from RA until age 18 (rather than tract-level poverty rates). The 
impacts on zip code poverty are about half as large as impacts on census-tract pov-
erty because zip codes provide a more aggregated measure of neighborhoods than 
census tracts. These zip code measures are a useful benchmark because we can 
construct analogous zip code–level measures (but not tract-level measures) in the 
tax data to analyze the effects of the MTO treatments on where children live in 
adulthood.

The key implication of Table 2 for our analysis of exposure effects is that the 
younger MTO children received a much larger dosage of exposure to improved 
neighborhood environments than the older MTO children. The TOT effects on 
post-RA neighborhood poverty rates are similar for the younger and older MTO 
children. That is, families who took up vouchers moved to similar neighborhoods 
irrespective of their children’s age. However, the younger children got the improve-
ments in neighborhoods starting at younger ages. On average the younger group got 
9.8 years of childhood exposure to better neighborhoods up to age 18, because they 
were 8.2 years old on average at RA. In contrast, those in the older group received 
only 2.9 years of childhood exposure to better neighborhoods on average, because 
they were 15.1 years old on average at RA. Our next task is to examine how this 
exposure to different neighborhood environments affected the long-run economic, 
educational, and family outcomes of the MTO children.

B. Income in Adulthood

Table 3 presents estimates of MTO treatment effects on children’s income and 
employment rates in adulthood. As in Table 2, we divide children into two groups: 
younger children (less than 13 years at RA) and older children (13 to 18 years at 
RA).

We begin in column 1 of Table 3 by estimating I T T effects of the MTO treatments 
on annual W-2 wage earnings between 2008–2012. This regression is estimated with 
one observation per year per child and includes no controls other than randomiza-
tion site indicators. To avoid measuring earnings when children are still in college, 
we only include observations in which a child is 24 or older. The standard errors, 
which are clustered by family, adjust for the repeated observations for each child.19

For children below age 13 at RA, mean W-2 earnings in the control group is 
$9,549. Children assigned to the experimental voucher group have annual W-2 
earnings that are $1,340 (14 percent) higher on average than those in the control 
group. This estimate is significantly different from zero with ​p < 0.05​. The esti-
mated I T T effect of the Section 8 voucher is about half as large as the I T T effect 

19 In our baseline analysis, we do not trim the income measures. Top-coding income at $100,000 yields similar 
estimates of mean treatment effects (online Appendix Table 3C, columns 9 and 10).
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of the experimental voucher. For children aged 13–18 at RA, the estimated effects 
of both the experimental and Section 8 vouchers are negative, although they are not 
statistically significant.

W-2 earnings do not include self-employment income, tips, or earnings from jobs 
that paid less than $1,800 a year, all of which may be important income sources for 
individuals in the MTO sample. We therefore turn in column 2 to a broader mea-
sure, which we call “individual earnings,” that sums W-2 earnings and non-W-2 
earnings using data from 1040 tax forms (see Section IIB for further details). For 
younger children, the I T T effect of the experimental voucher on individual earnings 

Table 3—Impacts of MTO on Children’s Income in Adulthood

W-2 earn-
ings ($)

2008–2012 
ITT

Individual earnings 
2008–2012 ($)

  Individual earnings 
($) Employed 

(%) 
2008–

2012 ITT

Hhold. 
inc. ($) 

2008–2012 
ITT

Inc. 
growth ($) 
2008–2012 

ITTITT
ITT w/
controls TOT

  Age 26 
ITT

2012 
ITT

  (1) (2) (3) (4)   (5) (6) (7) (8) (9)

Panel A. Children < age 13 at random assignment 
Exp. versus 1,339.8** 1,624.0** 1,298.9** 3,476.8**   1,751.4* 1,443.8** 1.824 2,231.1*** 1,309.4**
  control (671.3) (662.4) (636.9) (1,418.2)   (917.4) (665.8) (2.083) (771.3) (518.5)
Sec. 8 versus 687.4 1,109.3 908.6 1,723.2   551.5 1,157.7* 1.352 1,452.4** 800.2
  control (698.7) (676.1) (655.8) (1051.5)   (888.1) (690.1) (2.294) (735.5) (517.0)
                     
Observations 8,420 8,420 8,420 8,420   1,625 2,922   8,420 8,420 8,420

Control group mean 9,548.6 11,270.3 11,270.3 11,270.3   11,398.3 11,302.9 61.8 12,702.4 4,002.2
                   

Panel B. Children age 13–18 at random assignment  
Exp. versus −761.2 −966.9 −879.5 −2,426.7   −539.0 −969.2 −2.173 −1,519.8 −693.6
  control (870.6) (854.3) (817.3) (2,154.4)   (795.4) (1,122.2) (2.140) (11,02.2) (571.6)
Sec. 8 versus −1,048.9 −1,132.8 −1,136.9 −2,051.1   −15.11 −869.0 −1.329 −936.7 −885.3
  control (932.5) (922.3) (866.6) (1,673.7)   (845.9) (1213.3) (2.275) (11,85.9) (625.2)
                     
Observations 11,623 11,623 11,623 11,623   2,331 2,331 11,623 11,623 11,623

Control group mean 13,897.1 15,881.5 15,881.5 15,881.5   13,968.9 16,602.0 63.6 19,169.1 4,128.1

Notes: Columns 1–3 and 5–9 report ITT estimates from OLS regressions (weighted to adjust for differences in 
sampling probabilities across sites and over time) of an outcome on indicators for being assigned to the experi-
mental voucher group and the Section 8 voucher group as well as randomization site indicators. Column 4 reports  
TOT estimates using a 2SLS specification, instrumenting for voucher take-up with the experimental and Section 8 
assignment indicators. Standard errors, reported in parentheses, are clustered by family. Panel A restricts the sam-
ple to children below age 13 at random assignment; panel B includes children between age 13 and 18 at random 
assignment. The estimates in panels A and B are obtained from separate regressions. The number of individuals is 
2,922 in panel A (except in column 5, where it is 1,625) and 2,331 in panel B. The dependent variable in column 
1 is individual W-2 wage earnings, summing over all available W-2 forms. Column 1 includes one observation per 
individual per year from 2008–2012 in which the individual is 24 or older. Column 2 replicates column 1 using 
individual earnings as the dependent variable. Individual earnings is defined as the sum of individual W-2 and non-
W-2 earnings. Non-W-2 earnings is adjusted gross income minus own and spouse’s W-2 earnings, social security 
and disability benefits, and UI payments, divided by the number of filers on the tax return. Non-W-2 earnings is 
recoded to zero if negative and is defined as zero for non-filers. Column 3 replicates column 2, controlling for the 
characteristics listed in online Appendix Table 1A. Column 4 reports TOT estimates corresponding to the ITT esti-
mates in column 2. In column 5, we measure earnings in the year when the individual is 26 years old. In column 
6, we measure earnings in 2012, limiting the sample to those 24 or older in 2012. Columns 7–9 replicate column 
1 with the following dependent variables: employment (an indicator for having positive W-2 earnings), household 
income (adjusted gross income plus tax-exempt social security benefits and interest income for those who file tax 
returns, the sum of W-2 wage earnings, SSDI benefits, and UI benefits for non-filers, and zero for non-filers with 
no W-2 earnings, SSDI, or UI benefits), and individual earnings growth (the change in individual earnings between 
year t − 5 and the current year t).

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.



872 THE AMERICAN ECONOMIC REVIEW April 2016

is $1,624: again a 14 percent increase relative to the control group mean, which is 
$11,270. The I T T effect of the Section 8 voucher is $1,109 and is marginally sig-
nificant, with ​p = 0.101.​ Once again, the estimated effects on the older children are 
negative but statistically insignificant.

The larger treatment effects on individual earnings than on W-2 earnings could 
potentially be driven by endogenous tax filing responses, as non-W-2 earnings are 
observed only for individuals who file tax returns.20 We do find that the experimen-
tal voucher treatment increased federal tax filing rates 5.7 pp for younger children 
(see Table 12 below). However, mean non-W-2 earnings for tax filers in the control 
group—which is a plausible upper bound for non-filers—is only $1,721. Hence, the 
5.7 pp filing increase accounts for at most ​0.057 × $1,721 = $98​ of the increase 
in non-W-2 earnings for younger children, a small portion of the observed increase 
in non-W-2 earnings of $284 (online Appendix Table 3C, column 2). Hence, the 
majority of the increase in non-W-2 earnings appears to be driven by real changes in 
earnings behavior, consistent with the fact that both non-W-2 and W-2 earnings rise 
by 14 percent in the experimental voucher group relative to the control group. We 
therefore use the broader “individual earnings” measure as our preferred measure of 
earnings in what follows.

Column 3 of Table 2 replicates the specification in column 2 including the base-
line covariates used in the MTO final impacts evaluation (Sanbonmatsu et al. 2011), 
listed in online Appendix Table 1A. For younger children, the inclusion of these 
covariates reduces the point estimates by about 20 percent, approximately one-third 
to one-half of a standard error of the baseline estimates.21 If one includes differ-
ent subsets of the covariates, one can obtain point estimates that are slightly larger 
or smaller than the baseline estimates without controls. Importantly, the estimated 
coefficients generally fluctuate by less than half a standard error when we include 
different sets of covariates and thus are not statistically significant from each other, 
consistent with random assignment and balance across the treatment arms.

For completeness, we report estimates with the full set of baseline controls for 
all the other specifications in Table 3 in online Appendix Table 3A. The inclusion of 
controls tends to yield slightly smaller estimated MTO treatment effects relative to 
the specifications without controls, but the differences are not statistically indistin-
guishable from each other and do not alter the qualitative conclusions. In particu-
lar, the experimental voucher treatment has a large, statistically significant positive 
effect on earnings of younger children, the Section 8 voucher has smaller positive, 
marginally significant effects on younger children, and the effects of both treatments 
on older children are negative and statistically insignificant.22 We also consistently 
find significant treatment effects ( ​p < 0.05​) for the younger children, both with and 

20 In contrast, W-2 earnings are observed for all individuals, irrespective of whether they file tax returns or not. 
Hence, the estimate in column 1 of Table 3 is unaffected by concerns about endogenous reporting.

21 The changes in the coefficients are due to differences in the characteristics of the treatment and control groups 
that arise from sampling error. For example, the drop in the experimental treatment effect is driven primarily by the 
fact that the experimental group has slightly more educated parents (online Appendix Table 1A).

22 For a few outcomes, such as W-2 earnings, the inclusion of controls attenuates the estimates to the point 
where the estimates are no longer significant with ​p < 0.05​. For example, column 1 of online Appendix Table 3A 
shows the I T T impact on W-2 earnings for the younger children in the experimental group is $1,016.8 with a stan-
dard error of $640 ( ​p = 0.11​). However, the point estimate of $1,016.8 is not statistically distinguishable from the 
baseline estimate without controls ($1,339.8).
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without controls, when we pool the Section 8 and experimental groups into a single 
treatment group (online Appendix Table 11, columns 7–8).

Column 4 of Table 3 reports TOT estimates on individual earnings using the spec-
ification in (2). These TOT estimates correspond to the I T T estimates reported in 
column 2; we report TOT estimates corresponding to all the other I T T specifications 
in Table 3 in online Appendix Table 3B. The estimates in column 4 show that chil-
dren whose families took up the experimental voucher and moved when they were 
young (below age 13, age 8.2 on average) experience an increase in annual individ-
ual earnings in early adulthood of $3,477. This is a 31 percent increase relative to 
the control group mean earnings of $11,270 and a 34 percent increase relative to the 
“control complier mean” (CCM) of $10,165 (online Appendix Table 3B, column 
4).23

Section 8 moves lead to a TOT increase in individual earnings of $1,723 per year 
(15 percent of the control group mean and 16 percent of the Section 8 CCM) for 
younger children. The Section 8 TOT effect on earnings is roughly half as large as 
the TOT effect of the experimental voucher. This mirrors the fact that the Section 
8 TOT effect of −12 pp on mean tract-level poverty rates from RA until age 18 
was also roughly half as large as the experimental voucher TOT effect of −22 pp 
on poverty rates (Table 2, column 5). Dividing the TOT effects on earnings by the 
TOT effects on poverty rates, we infer that growing up in a census tract with a 10 pp 
lower poverty rate starting at a young age (age 8.2 on average) increases earnings in 
adulthood by about 13–15 percent.

The TOT estimates for older children are around −$2,000 for both treatments but 
are not statistically distinguishable from zero. However, we can reject the hypothe-
sis that the effects of the experimental voucher for the older children are the same as 
those for the younger children with ​p = 0.02​ (see Section IVC).

In our baseline specifications, we measure earnings for younger children at an 
earlier age than for older children. In column 5, we replicate the specification in 
column 2 measuring earnings at age 26 for all children.24 This specification yields 
roughly similar estimates, showing that the age differences are not responsible for 
the larger effects observed for younger children. In column 6, we measure earnings 
using data from the most recent available year (2012) for all children to evaluate 
whether differences in the calendar year when income is measured affect the results. 
Again, this specification yields similar estimates, with significant gains for younger 
children and negative point estimates for the older children.

In column 7, we estimate the I T T effects of the MTO treatments on employ-
ment rates. This specification replicates column 2 using an indicator for having any 
W-2 earnings in a calendar year as the dependent variable. MTO treatments have 
small, statistically insignificant impacts on the extensive margin of employment. 
The I T T for employment of the young experimental children is 1.8 pp, a 3 percent 
increase relative to the control group mean of 61.8 percent. Thus, MTO’s impacts 

23 The CCM is an estimate of mean earnings for those in the control group who would have taken up the exper-
imental voucher had they been assigned to the experimental group. The experimental CCM is calculated as mean 
earnings among compliers (i.e., those who took up the voucher) in the experimental group minus the TOT estimate 
of the experimental treatment effect, as in Kling, Liebman, and Katz (2007).

24 Earnings comparisons at age 26 limit the sample of younger MTO children to those who were 8 to 12 years 
old at RA with a mean of 10.7 years as compared to a mean age at RA for the older MTO children of 15.1 years.
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on increasing earnings for younger children appear to be driven primary by higher 
wage rates and/or greater hours worked in a year rather than by changes in whether 
or not individuals work at all over the course of a year.

Household Income.—In column 8, we estimate I T T effects on household income. 
Household income expands upon our individual earnings measure by including 
spouse’s income (for married tax filers), unemployment insurance income, and 
social security and disability (SSDI) income (see Section IIB for details). For 
younger children, the experimental I T T effect on household income is $2,231, $607 
larger than the I T T on individual earnings reported in column 2. The experimental 
I T T on household income is significantly different from zero with ​p < 0.01​. The 
Section 8 I T T effect on household income is $1,452 and is significantly different 
from zero with ​p < 0.05​. The effects of the treatments on the household income of 
older children remain negative and statistically insignificant.

We investigate why the MTO treatments have larger effects on household income 
than on individual earnings for younger children in online Appendix Table 3C, 
which shows I T T effects on the components of income that contribute to house-
hold income. The additional $607 impact of the experimental voucher on household 
income relative to individual earnings is predominantly driven by spousal income, 
which is $521 higher in the experimental group for younger children. Part of the 
observed effect on spousal income could be driven by endogenous tax filing, as 
spousal income is only observed for individuals who file tax returns. However, cal-
culations analogous to those above imply that at most ​0.057 × $802.1  =  $46​ of 
the $521 experimental impact on spousal income can be accounted for by a fil-
ing response, assuming that the mean spousal income of married non-filers is no 
larger than the mean spousal income of $802 for tax filers in the control group.25 
This increase in spousal income can be entirely accounted for by the effect of the 
experimental voucher treatment on marriage rates (rather than an increase in a 
given spouse’s level of earnings), as we show in Table 5 below.26 The experimental 
voucher treatment also increases unemployment benefits by $167 per year, possibly 
because higher labor force participation rates increase eligibility for unemployment 
benefits. It reduces social security and disability benefits by $98 per year, consistent 
with increases in labor supply and earnings.

Earnings Trajectories.—Earnings rise steeply in the mid to late twenties as chil-
dren complete education and enter the labor force (Haider and Solon 2006). Thus, 
one might expect the treatment effects of MTO to grow as we measure children’s 
earnings at later ages. Figure 1 plots estimates of the I T T effect of the experimental 
voucher treatment on individual earnings, varying the age at which earnings are 

25 Part of the observed effect on spousal income could be driven by endogenous tax filing, as spousal income 
is only observed for individuals who file tax returns. However, calculations analogous to those above imply that at 
most ​0.057 × $802.1 = $46​ of the $521 experimental impact on spousal income can be accounted for by a filing 
response, assuming that the mean spousal income of married non-filers is no larger than the mean spousal income 
of $802 for tax filers in the control group.

26 For younger children, the experimental voucher increases the fraction married by 1.9 percentage points 
(Table 5, column 1). The mean individual income of spouses in the control group for married individuals is $25,568. 
If the marginal individuals marry individuals with average income, we would predict an increase in household 
income of ​0.019 × $25,568 = $486​ , similar to the observed increase of $521.



875chetty et al.: effects of moving to opportunity experimentVOL. 106 NO. 4

measured from 20 to 28. These effects are estimated using specifications analogous 
to that in column 5 of Table 3. The MTO experimental impact does in fact rise 
sharply with age of income measurement for the younger children. The null hypoth-
esis that the experimental impacts do not vary with the age at which income is mea-
sured is rejected with ​p < 0.01​.27 In contrast, the treatment effects fall significantly 
with the age at which income is measured for the older children, implying that they 
not only have lower earnings but also have less earnings growth in their early career 
relative to those in the control group. A similar pattern of rising treatment effects 
with age of income measurement for younger children and declining effects with 

27 To estimate this p-value, we regress earnings on the treatment group indicators linearly interacted with the age 
of income measurement, controlling for age of income measurement fixed effects interacted with site fixed effects. 
The p-value is based on the coefficient for the interaction of age at income measurement with the experimental 
treatment indicator. We estimate this regression in a dataset with one observation per age of income measurement 
per child and cluster standard errors by family.
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Figure 1. Impacts of Experimental Voucher by Age of Earnings Measurement

Notes: This figure presents ITT estimates of the impact of being assigned to the experimental voucher group on 
individual earnings, varying the age at which earnings is measured from 20 to 28. The estimate at each age is 
obtained from an OLS regression (weighted to adjust for differences in sampling probabilities across sites and 
over time) of individual earnings at that age on indicators for being assigned to the experimental voucher group 
and the Section 8 voucher group as well as randomization site indicators. We plot the coefficient on the experimen-
tal voucher group indicator in this figure; the corresponding estimates for the Section 8 voucher group are shown 
in online Appendix Figure 1. The series in circles restricts the sample to children below age 13 at random assign-
ment; the series in triangles includes children between age 13 and 18 at random assignment. The estimates in the 
two series are obtained from separate regressions. The estimates at age 26 exactly match those reported in column 
5 of Table 3; the remaining estimates replicate that specification, varying the age at which earnings is measured. 
The null hypothesis that the experimental impacts do not vary with the age of income measurement is rejected with 
p < 0.01 for the below 13 series and p = 0.06 for the age 13–18 series. See notes to Table 3 for further details on 
specifications and variable definitions.
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age of income measurement for older children is observed for the Section 8 group, 
although the estimates are noisier and attenuated (online Appendix Figure 1).

Column 9 quantifies the effects of the MTO treatment on earnings growth over a 
five-year period. The dependent variable in this specification is the difference in indi-
vidual earnings in year ​t​ minus year ​t − 5​; as in the other specifications in Table 3, 
we restrict the sample to observations in which the individual is 24 or older in year ​t​. 
In the control group, the mean level of income growth over five years is $4,002 for 
younger children. The I T T effect of the experimental voucher on five-year income 
growth is $1,309 (a 33 percent increase), while the I T T effect of the Section 8 
voucher is $800 (a 20 percent increase). These results suggest that our baseline esti-
mates, which measure income starting at age 24, likely understate the total lifetime 
earnings impacts of the MTO experimental voucher on children who were young at 
the point of the move.

Summary.—In sum, our analysis of children’s income in adulthood yields three 
robust findings. First, the MTO experimental voucher treatment substantially 
increased the earnings of children who were young (below age 13) at the point of 
the move, with a TOT impact on individual earnings of approximately 35 percent. 
Second, the Section 8 voucher increased individual earnings of young children about 
half as much as the experimental voucher, consistent with the fact that it reduced 
neighborhood poverty rates half as much. Third, the impacts of both treatments on 
older children are somewhat negative (although not statistically significant).

These three facts are consistent with a simple model that combines positive expo-
sure effects from moving to lower-poverty neighborhoods with a negative disruption 
cost of moving to such a neighborhood. Such a model would generate our empirical 
results because the exposure effects outweigh the disruption cost for children who 
move when young, but not for children who move at older ages. Note that because 
families in both the control and treatment groups moved frequently, the disruption 
cost must reflect the cost of moving to a different type of neighborhood (as induced 
by the MTO voucher treatments, especially the experimental voucher) rather than 
a fixed cost of moving houses within the same neighborhood or a similar nearby 
neighborhood (as typically occurred in the control group).

C. College Attendance and Quality

In Table 4, we examine MTO impacts on college attendance rates and college 
quality. Table 4 and the subsequent tables are structured in the same way as Table 3: 
panel A reports estimates for younger children (below age 13 at RA), while panel 
B reports estimates for older children (ages 13–18 at RA). We report I T T estimates 
using the specification in (1), with no additional controls other than randomiza-
tion site indicators. For this and all subsequent outcomes, the corresponding online 
Appendix tables with the same number provide I T T estimates with the full set of 
controls and TOT estimates corresponding to the specifications in the main table.

We begin in column 1 by analyzing treatment effects on college attendance rates 
between the ages of 18–20. College attendance is measured using 1098-T forms 
as discussed in Section IIB. This regression includes one observation per child at 
ages 18, 19, and 20; the standard errors, which are clustered by family, adjust for 
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the repeated observations for each child. For younger children (panel A), the mean 
college attendance rate between the ages of 18–20 in the control group is 16.5 per-
cent. Children assigned to the experimental voucher group are 2.5 percentage points 
(pp) more likely to attend college between the ages of 18–20. The corresponding 
TOT effect for children whose families took up the experimental voucher is a 5.2 pp 
increase in college attendance rates, a 32 percent increase relative to the control 
group mean, and a 34 percent increase relative to the control complier mean (online 
Appendix Table 4B, column 1).

The Section 8 voucher also has a positive I T T effect of 1 pp, but it is not statis-
tically significant. In contrast, for the older children, both MTO treatments have 
large and statistically significant negative effects. The experimental I T T is −4.3 pp, 
while the Section 8 I T T is −3 pp. These findings mirror the patterns observed for 
earnings, although the negative impacts on college attendance for older children are 
larger than on earnings.

Table 4—Impacts of MTO on Children’s College Attendance Outcomes

College attendance (%) ITT College quality ($) ITT

Age 18–20 Age 18 Age 19 Age 20 Age 21 Age 18–20 Age 18 Age 19 Age 20 Age 21 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A. Children < age 13 at random assignment 
Exp. versus 2.509** 2.213* 2.579* 2.734* 0.409 686.7*** 670.2*** 800.6*** 589.3** 337.8
  control (1.143) (1.200) (1.452) (1.464) (1.474) (231.2) (240.6) (274.3) (262.3) (269.9)
Sec. 8 versus 0.992 1.221 0.502 1.252 −0.371 632.7** 592.0** 604.7** 701.4** 549.2*
  control (1.264) (1.303) (1.613) (1.599) (1.592) (256.3) (268.2) (304.7) (294.9) (293.7)

Observations 15,027 5,009 5,009 5,009 5,009 15,027 5,009 5,009 5,009 5,009

Control group 16.5 11.3 18.6 19.6 20.1 20,914.7 20,479.6 21,148.7 21,115.7 21,152.3
  mean

Panel B. Children age 13–18 at random assignment
Exp. versus −4.261** −5.866*** −4.460** −2.995 −3.528* −882.8** −1195.7** −890.0* −672.6 −687.9*
  control (1.712) (2.180) (2.162) (2.077) (1.972) (385.5) (482.8) (465.0) (414.2) (402.6)
Sec. 8 versus −3.014* −3.339 −3.928* −1.882 −4.455** −597.2 −581.5 −730.2 −492.1 −603.0
   control (1.785) (2.295) (2.243) (2.182) (2.030) (434.2) (546.9) (511.5) (465.7) (446.6)

Observations 5,100 1,328 1,722 2,050 2,234 5,100 1,328 1,722 2,050 2,234
Control group
  mean

15.6 12.4 16.8 16.6 17.2 21,638.0 21,337.3 21,880.1 21,629.8 21,597.8

Notes: All columns report ITT estimates from OLS regressions (weighted to adjust for differences in sampling 
probabilities across sites and over time) of an outcome on indicators for being assigned to the experimental voucher 
group and the Section 8 voucher group as well as randomization site indicators. Standard errors, reported in paren-
theses, are clustered by family. Panel A restricts the sample to children below age 13 at random assignment; panel 
B includes children between age 13 and 18 at random assignment. The estimates in panels A and B are obtained 
from separate regressions. The dependent variable in column 1 is an indicator for attending college in a given year 
(having one or more 1098-T tax forms filed on one’s behalf), pooling data over the three years when the individual 
is ages 18–20 with one observation per year per individual. Years before 1999 are excluded because 1098-T data are 
available beginning only in 1999. Columns 2–5 replicate column 1, using college attendance at each age between 
18 and 21 as the dependent variable. The dependent variable in column 6 is Chetty, Friedman, and Rockoff’s (2014) 
earnings-based index of college quality, again pooling data from ages 18–20 starting in 1999. This index is con-
structed using US population data as the mean earnings at age 31 of students enrolled in that college at age 20; chil-
dren who do not attend college are assigned the mean earnings at age 31 of children who are not enrolled in any 
college at age 20. Columns 7–10 replicate column 6, using college quality at each age between 18 and 21 as the 
dependent variable.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.
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Columns 2–5 present estimates of impacts on college attendance rates by age, 
from age 18 to 21. The MTO experimental treatment increased college going for 
younger children in the period immediately following high school, but had lit-
tle effect beyond age 20. For younger children, the experimental I T T effects are 
approximately 2.5 pp from ages 18–20, but fall to 0.4 pp at age 21. The Section 8 
I T T estimates exhibit a similar pattern, with positive effects of around 1 pp from 
ages 18–20 and a small negative estimated effect at age 21.28 Meanwhile, the I T T 
effects on older children are consistently negative at all ages for both treatments.

Next, we investigate whether the MTO treatments also changed the types of col-
leges that students attended. To do so, we use a simple earnings-based index of col-
lege “quality,” defined as the mean earnings at age 31 of all US residents enrolled in 
a given college at age 20 (see Section IID for details). For those not enrolled in any 
college at age 20, the index equals the mean earnings at age 31 of all US residents 
not enrolled in college at age 20. We define college quality at age ​a​ for each child 
in the MTO sample based on the college in which the child was enrolled at age ​a​.

Column 6 of Table 4 replicates the specification in column 1 using college qual-
ity, measured between the ages of 18–20, as the dependent variable. For younger 
children, the experimental voucher increases mean college quality between the ages 
of 18–20 by $687—that is, expected earnings at age 31 are $687 higher for the 
experimental voucher group relative to the control group given the colleges that 
children attend.29 This estimate is significantly different from zero with ​p < 0.01​. 
This increase of $687 reflects a combination of extensive-margin responses (higher 
college attendance rates) and intensive-margin responses (attending a better col-
lege conditional on attending). We derive an upper bound on the extensive margin 
effect by assuming that those who are induced to attend college attend a college 
of average quality, which is a plausible upper bound for the quality of the college 
attended by the marginal college student. The mean college quality conditional on 
attending college for younger children in the control group is $31,409, while the 
quality for all those who do not attend college is $18,867. This suggests that at most 
​(31,409 − 18,867) × 0.025 = $314​ of the $687 impact is due to the extensive 
margin response. Hence, the MTO experimental voucher appears to improve not 
just college attendance rates but also the quality of colleges that students attend.30

The Section 8 voucher also has a large positive effect on college quality for 
younger children that is significant with ​p < 0.05​. The estimated effects on col-
lege quality for older children are negative and substantial in magnitude. The differ-
ence between the positive MTO experimental impact on college quality for younger 

28 We find small, statistically insignificant estimates on college attendance at older ages (up to age 25), similar 
to those at age 21. Thus, the positive MTO experimental treatment effect on college attendance for younger children 
from ages 18 to 20 does not appear to be driven purely by retiming of college attendance. However, our sample size 
declines when looking at older ages, so we cannot rule out some degree of retiming.

29 The increase in actual individual earnings of $1,624 (Table 3, column 2) is larger than the $686 impact on 
projected earnings at age 31 based on college attendance. This indicates that the MTO treatment effects on earnings 
go beyond what one would expect just from the labor market returns to increased college attainment. This is to be 
expected given the fact that even in the experimental voucher group, more than 80 percent of children do not attend 
college.

30 The point estimates of the treatment effects on college attendance and quality are slightly smaller when we 
include controls (online Appendix Table 4A). With controls, we estimate that the experimental treatment increased 
college attendance rates by 1.7 pp from ages 18–20 (as compared to 2.5 pp without controls) and increased college 
quality by $536.2 (as compared to $687 without controls).
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children and the large negative effect for older children is highly statistically signif-
icant ( ​p = 0.0006​), as shown in Table 11 below. The treatment impacts on college 
quality by age, shown in column 7–10 of Table 4, are similar to those for college 
attendance rates. The effects are larger between ages 18–20 and become smaller at 
age 21, suggesting that most of the marginal children induced to attend college do 
so immediately after high school.

Overall, the positive MTO treatment impacts on college outcomes for younger 
children and negative impacts for older children closely mirror the impacts on earn-
ings in Table 3. These results further support the view that moving to lower-poverty 
areas improves outcomes when one moves as a young child but not at older ages.

D. Marriage and Fertility

We next examine MTO treatment impacts on children’s marriage and fertility 
outcomes in Table 5. Columns 1–3 present I T T effects of the MTO treatments on 
marriage rates, based on whether the individual files a tax return jointly with a 
spouse. We include one observation per child per year from 2008–2012, limiting the 
sample to observations where children are 24 or older. In column 1, we pool males 
and females. For younger children, the experimental treatment increased the frac-
tion married in early adulthood by 1.9 pp, while the Section 8 treatment increases 
the fraction married by 2.8 pp. These changes are quite large relative to the frac-
tion married in the control group, which is only 3.4 percent.31 The MTO treatment 
effects for the younger children are substantially larger for females, for whom the 
marriage rate nearly doubles, than for males, for whom the effects are small and not 
statistically significant (columns 2 and 3). There are no detectable treatment effects 
on marriage for the older children.

In columns 4–7, we study the fertility behavior of the female children in the MTO 
sample, which we infer from applications from SSNs for children (see Section IIB). 
These specifications include one observation for each female child because the out-
comes are time-invariant. Columns 4 and 5 show that the MTO treatments do not 
have statistically significant effects on overall birth rates or teenage birth rates for 
either the younger or older female children. However, the experimental voucher 
treatment does change the family circumstances of births substantially, in particular 
the presence of the father at the birth. We measure whether the father is present at the 
child’s birth by whether his name and SSN are listed on the child’s SSN application 
(which is typically submitted when the child is born). In column 6, we restrict the 
sample to females who have a birth and use an indicator for having a father listed 
on the first-born child’s SSN application as the dependent variable. We find that the 
experimental voucher treatment increases the share of births in which the father is 
present by 6.8 pp for younger children. This leads to a significant decline of 4.8 pp in 

31 Because we only observe marital status for those who file tax returns, part of the observed response could 
be due to the increase in tax filing rates that we document in Table 8 below, but this bias is likely to be very small. 
The experimental voucher treatment increased federal tax filing rates 5.7 percentage points for younger children. If 
the marginal filer had the same probability of being married as individuals in the control group (3.4 percent), then 
endogenous filing accounts for at most ​0.057 × 0.034 = 0.2​ percentage points of the 1.9 pp increase in marriage 
rates that we observe. The more plausible explanation is that the increase in marriage rates induced by the treat-
ments led to the increase in tax filing rates documented in Table 8, as virtually all married working-age couples file 
tax returns (Cilke 1998).
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the fraction of females who have a birth with no father present, as shown in column 
7.32 The TOT effect corresponding to this estimate is −10.0 pp, implying that girls 
whose families moved using the experimental voucher when they were young are 26 
percent less likely to become single mothers (online Appendix Table 5B, column 7).

As with other outcomes, the Section 8 voucher has smaller effects on the father’s 
presence at birth than the experimental voucher. And the older female children in 
the MTO experimental group are much less likely to have a father listed on the 
birth certificate when they have births relative to the control group. Hence, mar-
riage and fertility behavior exhibit what is now a familiar pattern of effects, with 
significant increases in marriage rates and reductions in single parenthood for chil-
dren who moved to lower-poverty neighborhoods when young, but no change or 
opposite-signed effects for children who made the same moves at an older age.

32 Unlike column 6, where we focus on the endogenously selected sample of girls who have births, the specifi-
cation in column 7 is estimated on the full sample of all young girls in the MTO data, using an indicator for having 
a birth with no father present as the dependent variable.

Table 5—Impacts of MTO on Marriage and Fertility (Percentage Points)

Sample: All Males   Females

Dependent variable: Married Married

 

Married
Has 
birth

Teen 
birth

Father on 
birth cert. 

Birth with no 
father present  

  (1) (2)   (3) (4) (5) (6) (7)

Panel A. Children < age 13 at random assignment        
Exp. versus control 1.934** 0.738   3.341** −2.253 −0.670 6.849** −4.807**
  (0.892) (1.038)   (1.476) (2.515) (2.117) (3.322) (2.352)
Sec. 8 versus control 2.840*** 1.020   4.731*** −0.285 2.409 2.671 −1.318
  (1.055) (1.092)   (1.831) (2.679) (2.375) (3.523) (2.562)
                 
Observations 8,420 4,384   4,036 2,409 2,379 1,410 2,409
Control group mean 3.4 2.7   4.1 59.1 19.9 44.1 33.0
                 
Panel B. Children age 13–18 at random assignment  
Exp. versus control −0.0637 −1.441   1.173 −2.589 −2.404 −8.259** 4.253
  (1.368) (1.848)   (1.988) (3.107) (3.172) (4.153) (3.626)
Sec. 8 versus control 0.654 −0.577   1.811 −0.547 −0.635 −0.182 −0.701
  (1.465) (1.946)   (2.181) (3.304) (3.579) (4.409) (3.807)
                 
Observations 11,623 5,852   5,771 1,158 1,141 888 1,158
Control group mean 9.3 9.3   9.2 77.8 24.7 46.7 41.4

Notes: All columns report ITT estimates from OLS regressions (weighted to adjust for differences in sam-
pling probabilities across sites and over time) of an outcome on indicators for being assigned to the experimen-
tal voucher group and the Section 8 voucher group as well as randomization site indicators. Standard errors, 
reported in parentheses, are clustered by family. Panel A restricts the sample to children below age 13 at random 
assignment; panel B includes children between age 13 and 18 at random assignment. The estimates in panels A 
and B are obtained from separate regressions. Column 1 includes one observation per individual per year from 
2008–2012 in which the individual is 24 or older. The dependent variable in column 1 is an indicator for filing a tax 
return as a married individual in a given year. Columns 2 and 3 replicate column 1 for males and females, respec-
tively. Columns 4–7 restrict the sample to females and include one observation per individual. The dependent vari-
able in column 4 is an indicator for having a child before June 2014. In column 5, it is an indicator for having a child 
before the age of 19. Column 6 restricts the sample to females who have a birth; the dependent variable in this col-
umn is an indicator for having a father listed on the first-born child’s SSN application. In column 7, the dependent 
variable is an indicator for having one or more births, with no father listed on the SSN application for the first birth.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.
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E. Neighborhood Characteristics in Adulthood

The MTO vouchers substantially reduced the degree of neighborhood poverty 
experienced by MTO children during their childhood (Table 2). Do these child-
hood improvements in neighborhood environments persist into adulthood, provid-
ing better neighborhoods for the next generation (the children of MTO children)? In 
Table 6, we answer this question using information drawn from tax records on the 
zip codes where MTO children live in adulthood.33

Among younger children (panel A), both the experimental and Section 8 children 
live in better neighborhoods in adulthood relative to the control group children on 
a wide range of measures. In column 1, we measure I T T effects on zip code–level  

33 We are unable to obtain zip codes for 20.4 percent of the children because we do not have tax returns or W-2 
forms for them. The rate of missing zip code data does not vary across the treatment and control groups.

Table 6—Impacts of MTO on Children’s Neighborhood Characteristics in Adulthood

Poverty share
in zip

2008–2012 (%)

Mean income 
in zip 

2008–2012 ($)

Black share 
in zip 

2008–2012 (%)

Single mother 
share in zip 

2008–2012 (%)
  (1) (2) (3) (4)

Panel A. Children < age 13 at random assignment  
Exp. versus control −1.592*** 1,345.9*** −2.852** −1.812**
  (0.602) (489.5) (1.417) (0.862)
Sec. 8 versus control −1.394** 1,322.0** −5.654*** −3.087***
  (0.699) (558.6) (1.714) (1.001)
         
Observations 6,649 6,649 6,651 6,648

Control group mean 23.8 25,014.3 43.0 42.0
         
Panel B. Children age 13–18 at random assignment  
Exp. versus control −0.523 604.2 0.465 −0.294
  (0.643) (478.5) (1.654) (0.940)
Sec. 8 versus control −0.928 442.0 −2.631 −1.856*
  (0.698) (524.2) (1.715) (0.976)
         
Observations 9,149 9,149 9,149 9,148

Control group mean 23.6 25,170.5 39.6 40.1

Notes: All columns report ITT estimates from OLS regressions (weighted to adjust for differences in sampling 
probabilities across sites and over time) of an outcome on indicators for being assigned to the experimental voucher 
group and the Section 8 voucher group as well as randomization site indicators. Standard errors, reported in paren-
theses, are clustered by family. In this table, we only include observations where zip code information in the rele-
vant year is available (based on 1040 tax returns, W-2’s, or other information returns). In 2012, zip code data are 
available for 79.56 percent of observations for children age 24 or older. Panel A restricts the sample to children 
below age 13 at random assignment; panel B includes children between age 13 and 18 at random assignment. The 
estimates in panels A and B are obtained from separate regressions. Outcome variables are defined using zip code– 
level data from the 2000 census. All columns include one observation per individual per year from 2008–2012 in 
which the individual is 24 or older and in which zip code information is available. The dependent variable in column 
1 is the poverty share (share of households below the poverty line in the 2000 census) in the individual’s zip code. 
Columns 2–4 replicate column 1 with the following dependent variables: mean income in the zip code (aggregate 
income divided by the number of individuals 16–64), black share (number of people who are black alone divided by 
total population in 2000) and single mother share (number of households with female heads and no husband present 
with own children present divided by the total number of households with own children present).

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.
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poverty rates, with one observation per child per year from 2008–2012 (only includ-
ing observations where children are age 24 or older). The experimental I T T estimate 
is −1.6 percentage points, about one-third as large as the treatment effect on the 
average poverty rate in the zip code where the individual lived in childhood (Table 2, 
column 6). Columns 2–4 examine impacts on other neighborhood characteristics 
using the same specification as in column 1. They show that children assigned to the 
experimental group also live in areas with higher mean income, less racial segrega-
tion (lower share of black residents), and a lower share of female-headed households. 
All of these treatment effects are significantly different from zero with ​p < 0.01​. In 
contrast, the MTO treatments on adult neighborhood quality are smaller and typi-
cally not statistically significant for the older MTO children, as seen in panel B of 
Table 6.

Together, Tables 5 and 6 indicate that the improvements in neighborhood envi-
ronments for the younger MTO children lead to better neighborhood and family 
environments for the next generation, the grandchildren of the original MTO par-
ents. Relative to the grandchildren in the control group, the grandchildren in the 
experimental group are more likely to be raised in lower-poverty neighborhoods by 
two parents who have a higher level of household income and are more likely to have 
attended college. In short, subsidized housing vouchers produce durable benefits 
that persist into subsequent generations for children who moved to lower-poverty 
neighborhoods at young ages.

F. Heterogeneity of Treatment Effects

Prior work has found that the MTO treatments had more positive effects on female 
children than on male children in terms of mental health, physical health, risky behav-
iors, and educational outcomes during adolescence (Kling, Liebman, and Katz 2007; 
Sanbonmatsu et al. 2011; Ludwig et al. 2013). In Table 7, we reexamine the hetero-
geneity of MTO treatment effects by child gender, but look at outcomes in adulthood.

In contrast to the substantially more favorable MTO treatment impacts for female 
than male children when they were teenagers, we find roughly similar impacts by 
gender when observing the MTO children as adults. Table 7 shows I T T estimates 
by gender for individual earnings, college quality, and zip code–level poverty rates 
in adulthood. Columns 1 and 2 show experimental I T T estimates by gender, while 
columns 3 and 4 show Section 8 I T T estimates by gender. We show the mean value 
of the dependent variable for the control group in the relevant estimation sample in 
square brackets to facilitate interpretation of magnitudes.34

For younger children (panel A), the experimental I T T effect on individual earn-
ings in adulthood (age 24 and above) for boys is $1,679, an estimate that is signifi-
cantly different from zero with ​p = 0.085​. The comparable estimate for girls is a 
very similar $1,439 ( ​p = 0.104​). The Section 8 I T T effects are slightly smaller 
for both boys and girls, at approximately $1,100. The experimental and Section 8 

34 An interesting feature of the data presented in Table 7 is that female MTO children have substantially higher 
adult earnings on average than male MTO children for both the younger and older groups—a striking reversal of the 
usual gender earnings gap favoring men. The difference arises from much higher employment rates for female than 
male MTO children, likely reflecting changes in labor market outcomes by gender in US disadvantaged populations.
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treatments also improve college quality (at ages 18–20) and neighborhood quality 
(at age 24 and above) for both boys and girls. Conversely, we find adverse long-term 
treatment effects for both boys and girls who were above age 13 at RA (panel B).

The positive effects of the MTO treatments on adult outcomes for the younger 
boys point to an intriguing dynamic pattern of neighborhood effects when combined 
with results from prior work. Previous work found positive initial impacts of MTO 
moves on young boys (at 1 to 3.5 years after random assignment), who had a sig-
nificantly lower incidence of problem behaviors (Katz, Kling, and Liebman 2001). 
But boys who moved to lower-poverty areas at young ages in the experimental group 
were doing moderately worse than those in the control group as teens in terms of 
risky behaviors and education (Sanbonmatsu et al. 2011). This pattern has now turned 
around to a strongly positive one in terms of labor market and educational outcomes 
in early adulthood. One speculative explanation for these patterns is that teenage 
misdeeds may have smaller adverse consequences and second chances may be more 

Table 7—Heterogeneity of Treatment Effects by Gender

  Experimental versus control   Section 8 versus control

  Male Female   Male Female
  (1) (2) (3) (4)

Panel A. Children < age 13 at random assignment 
Individual earnings 2008–2012 ($) ITT 1,679.2* 1,438.9   1,073.8 1,097.6
  (973.3) (885.1)   (947.1) (931.6)

[10,020.8] [12,634.2]   [10,020.8] [12,634.2]
College quality 18–20 ($) ITT 522.3* 819.4**   327.4 895.4**
  (290.1) (345.0)   (290.2) (399.2)

[20,443.8] [21,440.2]   [20,443.8] [21,440.2]
Zip poverty share 2008–2012 (%) ITT −1.498** −1.519**   −0.733 −2.055***
  (0.720) (0.674)   (0.793) (0.766)

[22.5] [24.5]   [22.5] [24.5]
           
Panel B. Children age 13–18 at random assignment  
Individual earnings 2008–2012 ($) ITT −1,832.4 −204.9   −1,410.6 −740.6
  (1,298.3) (1,044.6)   (1,363.6) (1,165.4)

[14,814.4] [16,997.5]   [14,814.4] [16,997.5]
College quality 18–20 ($) ITT −590.4 −1,201.4**   −27.44 −1,105.8*
  (496.6) (582.3)   (596.4) (618.6)

[20,935.2] [22,348.0]   [20,935.2] [22,348.0]
Zip poverty share 2008–2012 (%) ITT 0.281 −0.627   0.844 −1.241
  (1.069) (0.954)   (1.149) (1.059)

[21.8] [24.2]   [21.8] [24.2]

Notes: This table replicates the ITT OLS regression specifications in column 2 of Table 3 (individual earnings), 
column 6 of Table 4 (college quality), and column 1 of Table 6 (poverty share) separately for male and female chil-
dren. Columns 1 and 2 report the coefficient on the indicator for being assigned to the experimental voucher group; 
columns 3 and 4 report the coefficient on the indicator for being assigned to the Section 8 voucher group. The esti-
mates in columns 1 and 3 are for males, and the two estimates in each row of these columns come from a single OLS 
regression analogous to that in column 2 of Table 3. The estimates in columns 2 and 4 for females are constructed 
analogously. Standard errors, reported in parentheses, are clustered by family. Control group means for each estima-
tion sample are reported in square brackets. Panel A restricts the sample to children below age 13 at random assign-
ment; panel B includes children between age 13 and 18 at random assignment. See the notes to Tables 3, 4, and 6 
for further details on specifications and variable definitions.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.
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available for youth in middle-class neighborhoods than in more-distressed neighbor-
hoods. The positive MTO experimental impacts in adulthood for the younger female 
youth are less surprising, as previous work found significant positive impacts for the 
younger females in the experimental group both as teens in the interim evaluation and 
continued modestly positive effects as older teens in the final evaluation.

We also explored heterogeneity of the MTO treatment effects by race and eth-
nicity (online Appendix Table 7A) and across the five randomization sites (online 
Appendix Table 7B). The MTO experimental voucher increased individual earnings 
in adulthood and college quality for children below age 13 at RA in every racial 
group (black, Hispanic, and white) and in all five sites (Baltimore, Boston, Chicago, 
New York, and Los Angeles).35 The treatment effects on earnings and college qual-
ity are larger in the sites where the treatments led to larger reductions in neighbor-
hood poverty rates. In contrast, the estimated effects for the older children (ages 
13–18 at RA) are negative in virtually all the subgroups for each of the outcomes.

In summary, the main lesson of the heterogeneity analysis is that the long-term 
benefits of childhood exposure to lower-poverty neighborhoods are highly robust 
across genders, racial groups, and geographic locations.

G. Age Pattern of Exposure Effects

Thus far, we have split the MTO children into “younger” versus “older” children 
using a cutoff of age 13 at RA. In this section, we assess the sensitivity of our results 
to the choice of this cutoff and evaluate how the effects of the MTO treatments vary 
with a child’s age at move more generally.

As a first step, we replicate the baseline specifications in Tables 3–6, varying the 
cutoff used to split the sample. We find very similar estimates if we define “young” 
children as those below age 12 at RA or those below age 14 at RA (online Appendix 
Table 11). In particular, the estimated effects of the experimental voucher on indi-
vidual earnings, college quality, neighborhood poverty share, and fraction married 
are all significantly different from 0 at conventional significance levels, with point 
estimates similar to the baseline estimates. The Section 8 voucher also has positive 
effects in all cases, most of which are smaller than the experimental voucher impacts 
but still significantly different from 0.

Linear Exposure Models.—A different way to assess how the MTO treatment 
effects vary with children’s age at move is to estimate models that interact age at 
move linearly with the treatment indicators instead of splitting children into two 
groups. Pooling all children, we regress outcomes ( ​y​) on the MTO treatment group 
indicators (Exp and S8) and interactions of these treatment group indicators with the 
age at random assignment (AgeRA),

(3)	​ ​y​ i​​  =  α + ​β​E0​​ Ex​p​ i​​ + ​β​S0​​ S​8​i​​ + ​β​EA​​ Ex​p​ i​​ · AgeR​A​ i​​ 

	 + ​β​SA​​ S​8​i​​ · AgeR​A​ i​​ + ​sa​ i​​ γ + ​ϵ​i​​ , ​

35 Note that the subgroup-specific estimates are naturally much less precise because of the smaller sample sizes, 
and hence are not statistically significant in many cases.
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controlling for randomization site indicators interacted with indicators for age 
at RA (​​sa​ i​​​). The coefficients on the main effects for treatment group assignment 
(​​β​E0​​​ and ​​β​S0​​​) can be interpreted as the I T T impact of being offered a voucher to 
move to a better neighborhood at birth. The coefficients on the interaction terms 
with age at RA (​​β​EA​​​ and ​​β​SA​​​) can be interpreted as the average reduction in the I T T 
effects per year of reduced exposure to the new area. Note that we observe college 
outcomes only for children who were four or older at RA and earnings only for those 
who were six or older at RA. Hence, the estimates of impacts at birth rely on out-of-
sample extrapolations based on the linear functional form.

Table 8 presents estimates of (3) for individual earnings (column 1), household 
income (columns 2 and 3), college quality (column 4), marriage rates (column 5) 
and the zip code poverty share in adulthood (column 6). Column 7 reports effects on 
total taxes paid—an outcome that we return to in Section V below. Online Appendix 
Table 8A replicates the I T T estimates in Table 8 including the baseline controls. 
Online Appendix Table 8B presents TOT estimates, estimated using a 2SLS speci-
fication where we instrument for voucher take-up (and the interactions) using treat-
ment assignment indicators.

The estimates in Table 8 indicate large and statistically significant beneficial 
impacts of the experimental treatment for all the outcomes, with the gains declin-
ing rapidly with age at RA. In other words, the benefits of being offered an MTO 
experimental voucher increase with potential years of childhood exposure to better 
neighborhoods. For example, the experimental I T T estimates for individual earn-
ings in column 1 imply an increase in annual adult earnings of ​​β​E0​​ = $4,823​ for 
those offered an experimental voucher at birth. The estimated effect on earnings 
falls by ​​β​EA​​  =  − $364​ per year, so the predicted effect reaches zero for children 
who are 13.25 years at RA and becomes negative for children who move as teenag-
ers. This pattern is consistent with positive childhood exposure effects on earnings 
coupled with a disruption cost of moving to a very different social environment 
(e.g., moving from a high-poverty to a low-poverty neighborhood or moving a sub-
stantial geographic distance) that outweighs the exposure benefits if children move 
after age 13.

The Section 8 voucher has a similar pattern of effects with attenuated magni-
tudes. The TOT estimates of both the treatment effects at birth and the interactions 
with age at RA are about half as large for the Section 8 group as for the experimental 
group for most outcomes (online Appendix Table 8B). This mirrors the fact that the 
Section 8 treatment reduced neighborhood poverty rates in childhood half as much 
as the experimental treatment (Table 2).

Note that one cannot necessarily interpret the interaction effects (​​β​EA​​​ and ​​β​SA​​​) as 
the causal effects of an additional year of childhood exposure to lower-poverty areas. 
The differences in estimated effects by age at RA could be driven by heterogeneity in 
the types of families who sign up for MTO or comply with MTO treatments by age of 
children. Conceptually, our ability to identify causal exposure effects is limited by the 
fact that the MTO experiment only randomized voucher offers; it did not randomize 
the age at which children moved, which could be correlated with other unobservable 
factors. Nevertheless, the linear interaction models in Table 8 do provide further evi-
dence supporting our main result that the MTO treatments had significant positive 
effects on children who were young at the point of random assignment.
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Nonparametric Estimates by Age at Move.—In Figure 2, we evaluate how 
the effects of the MTO treatments vary with children’s ages at move using a 
nonparametric approach. These figures plot I T T estimates of being assigned to the 
experimental voucher group by a child’s age at RA, grouping children into two-year 
age bins. Given the small sample sizes in each age group, we focus on the two 
outcomes for which we have the greatest precision: household income and college 
quality. In panel A, we regress household income on the treatment group indica-
tors using a specification analogous to column 8 of Table 3. In panel B, we regress 
college quality on these indicators using the specification in column 6 of Table 4. 
In each panel, we estimate separate regressions using the data within each age bin 
and plot the experimental I T T estimates along with a 95 percent confidence interval 
(shown by the dashed lines).

Panel A shows that the experimental voucher increased household income in 
adulthood by approximately $2,000 for children who were offered the experimental 
voucher at or before age ten. This effect declines steadily with age at RA and 
becomes negative around age 13. Similarly, panel B shows significant positive 
effects on college quality for children who move at young ages, which then become 

Table 8—Linear Exposure Effect Estimates

Indiv. earn. ($)
2008–2012 

ITT 

Household income ($)  
  Coll. qual. 

18–20 
ITT ($)

Married 
ITT (%)

Zip poverty 
share 

ITT (%)

Taxes
paid 

ITT ($)
2008–2012 

ITT 
Age 26

ITT
  (1) (2) (3)   (4) (5) (6) (7)

Experimental −364.1* −723.7*** −564.9**   −171.0*** −0.582** 0.261* −65.81***
  × age at RA (199.5) (255.5) (282.8)   (55.16) (0.290) (0.139) (23.88)
Section 8 × age −229.5 −338.0 157.2   −117.1* −0.433 0.0109 −42.48*
   at RA (208.9) (266.4) (302.0)   (63.95) (0.316) (0.156) (24.85)
Experimental 4,823.3** 9,441.1*** 8,057.1**   1,951.3*** 8.309** −4.371** 831.2***
  (2,404.3) (3,035.8) (3,760.9)   (575.1) (3.445) (1.770) (279.4)
Section 8 2,759.9 4,447.7 −1,194.0   1,461.1** 7.193* −1.237 521.7*
  (2,506.1) (3,111.3) (3,868.2)   (673.6) (3.779) (2.021) (287.5)

Observations 20,043 20,043 3,956   20,127 20,043 15,798 20,043

Control group mean 13,807.1 16,259.9 14,692.6   21,085.1 6.6 23.7 627.8

Notes: This table reports ITT estimates from OLS regressions (weighted to adjust for differences in sampling prob-
abilities across sites and over time) of an outcome on indicators for being assigned to the experimental voucher 
group and the Section 8 voucher group, interactions between the experimental/Section 8 indicators and age at ran-
dom assignment (RA), and interactions between randomization site indicators and age at RA. All regressions are 
estimated using all children in the sample with available outcome data. Standard errors, reported in parentheses, 
are clustered by family. The dependent variable is individual earnings in column 1 and household income in col-
umns 2 and 3. See notes to Table 3 for definitions of these variables. In columns 4–7, we replicate column 1 with 
the dependent variables used in column 6 of Table 4, column 1 of Table 5, column 1 of Table 6, and column 2 of 
Table 12. See notes to those tables for definitions of these variables. Columns 1, 2, and 5–7 include one observation 
per individual per year from 2008–2012 in which the individual is 24 or older. Column 3 includes one observation 
per individual at age 26. Column 4 includes one observation per individual per year from ages 18–20, as in Table 4. 
The Experimental × age at RA coefficient can be interpreted as the change in the impact of being assigned to the 
experimental group for a child who is one year older at random assignment, and the Section 8 × Age at RA coeffi-
cient can be interpreted analogously.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.
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Figure 2. Impacts of Experimental Voucher by Children’s Age at Random Assignment

Notes: These figures plot ITT estimates of the impact of being assigned to the experimental voucher group by a 
child’s age at RA. Panel A plots impacts on household income for those above age 24, while panel B plots impacts 
on the earnings-based index of college quality between ages 18–20. To construct panel A, we first divide children 
into two-year age groups based on their age at random assignment; for instance, children who were ages 12 or 13 
at RA are placed in the “age 12” group in the figure. Since there are few children who are below age ten at RA and 
whose income is observed at age 24, we include those below age 10 at RA in the age 10 bin; likewise, we include 
children who are 18 at RA in the age 16 bin. Using data within each age bin, we regress household income on indi-
cators for being assigned to the experimental and Section 8 voucher groups using the same specification as in col-
umn 8 of Table 3, with one observation per individual per year from 2008–2012 in which the individual is 24 or 
older. The solid line is a best fit line for the plotted estimates. The dashed lines show the 95 percent confidence inter-
val for each of the estimates. Panel B replicates panel A using college quality as the dependent variable. The regres-
sion specification used to estimate the coefficients plotted in panel B is the same as that in column 6 of Table 4, with 
one observation per year when the child is between the ages of 18–20. We plot the coefficients on the experimen-
tal voucher group indicator in this figure; the corresponding estimates for the Section 8 voucher group are shown 
in online Appendix Figure 2. See notes to Tables 3 and 4 for definitions of household income and college quality.
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negative for children moving in adolescence.36 In both cases, we cannot reject the 
hypothesis that the relationship between age at move and the treatment effects is 
linear, although the age-specific estimates are not very precise because of the small 
sample sizes. There is little evidence of a “critical age” below which children must 
move to benefit from a better neighborhood. The roughly linear pattern of expo-
sure effects in the MTO data matches the quasi-experimental findings of Chetty and 
Hendren (2015), who document a much more precisely estimated pattern of linear 
childhood exposure effects using a sample of five million families that moved across 
counties.37

IV.  Reconciling the Findings with Previous MTO Research

In this section, we reconcile our new findings with prior research on MTO’s 
impacts on the economic outcomes of adults and children. We first show that, con-
sistent with prior work, exposure to better neighborhoods does not appear to improve 
adults’ outcomes. We then explain why our findings of exposure effects for children 
were not detected in prior research. Finally, we evaluate whether our findings on the 
heterogeneous effects of the MTO treatments by age at move may be an artifact of 
multiple hypothesis testing given that prior research on MTO has tested for hetero-
geneity in several other dimensions as well.

A. MTO Impacts on Adults’ Economic Outcomes

Previous research has found that the MTO treatments had little impact on adults’ 
income and employment rates (Kling, Liebman, and Katz 2007; Sanbonmatsu 
et al. 2011). These prior studies used data from state unemployment insurance 
(UI) records through 2008 and survey data collected in 2008–2009. In Table 9, we 
reexamine the effects of MTO on adults’ economic outcomes using the tax data. 
The tax data allow us to follow the MTO adults through 2012 and track individuals 
who move across state lines, who are missing from the state UI data of the original 
randomization sites.

Table 9 presents I T T estimates of MTO treatment impacts on the individual earn-
ings, household income, and employment rates of MTO adults.38 The specifications 
in columns 1–2 and 4–5 use one observation per year from 2008–2012 for each of 
the 4,215 adults in the linked MTO-tax data, while column 3 uses data only from 
2012.

36 Online Appendix Figure 2 plots the corresponding I T T estimates for the Section 8 voucher by age bin. We 
find qualitatively similar declining patterns for the impacts of the Section 8 voucher, although the estimates are 
attenuated in magnitude, consistent with our earlier findings.

37 Chetty and Hendren’s quasi-experimental estimates of exposure effects are identified on a sample consisting 
entirely of families who moved across counties, comparing the outcomes of children who move to different areas at 
different ages. Since everyone in Chetty and Hendren’s sample moves a significant distance, their estimates net out 
any fixed disruption costs of moving across social environments. In contrast, here we compare families who move to 
a low-poverty area (who face disruption costs of relocating to a very different area) to families who largely remain 
in higher-poverty areas (who do not pay such disruption costs). Our estimates therefore include the disruption cost 
of moving to a different environment. This difference may explain why we find negative effects for children who 
move at older ages in the MTO data, whereas Chetty and Hendren estimate positive exposure effects at all ages.

38 As in prior work, the “adult” whom we follow in the MTO data and link to the tax data is the household head 
at the point of RA, with preference given to the mother or other adult female guardian if present.
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Consistent with prior work, we find no effects of MTO treatments on any of the 
adults’ economic outcomes. The point estimates tend to be slightly negative for 
the experimental group and slightly positive for the Section 8 group, but all of the 
estimates are small and are not significantly different from zero. For example, the 
experimental voucher I T T on mean individual earnings from 2008–2012 is −$354 
(2.4 percent of the control group mean), with a standard error of $622. The corre-
sponding TOT estimate on individual earnings is −$734, 5.1 percent of the control 
group mean and 4.7 percent of the control complier mean (online Appendix Table 
9B, column 1). The upper bound of the 95 percent confidence interval for the TOT 
estimate is $1,795, 12 percent of the control group mean. This is far below the 
31 percent increase in individual earnings for young children.

Exposure Effect Estimates.—Clampet-Lundquist and Massey (2008) show that 
the number of years an adult spends in a low-poverty area is correlated with their 
earnings and other economic outcomes. Their findings raise the possibility of time 
of exposure impacts for adults similar to what we documented above for children.39 
We test for such exposure effects in Figure 3 by estimating the effects of the MTO 
treatments on individual earnings by the number of years since random assignment. 
We group the data into two-year bins based on the number of years elapsed since RA 
and estimate I T T regression specifications using the data within each bin.

39 Clampet-Lundquist and Massey’s analysis does not directly identify causal exposure effects because it 
exploits cross-sectional variation across individuals (which may be confounded by omitted variables) rather than 
the experimental variation generated by the randomly assigned treatments.

Table 9—Impacts of MTO on Adults’ Income

Individual earnings ($)

Employed (%) 
ITT

Hhold. inc. ($) 
ITT

  2008–2012
ITT

ITT 
w/controls 2012 ITT

  (1) (2) (3) (4) (5)

Exp. versus control −354.1 −168.7 −681.9 −0.946 −338.5
  (621.9) (558.2) (675.1) (1.704) (740.4)
Section 8 versus control 249.5 468.1 −99.67 −0.702 516.7
  (675.2) (609.0) (758.4) (1.833) (829.4)

Observations 21,075 21,075 4,215 21,075 21,075

Control group mean 14,381.0 14,381.0 13,700.6 54.9 17,951.5

Notes: All columns report ITT estimates from OLS regressions (weighted to adjust for differences in sampling 
probabilities across sites and over time) of an outcome on indicators for being assigned to the experimental voucher 
group and the Section 8 voucher group as well as randomization site indicators. Standard errors, reported in paren-
theses, are clustered by family. The sample consists of all individuals in the linked MTO-tax dataset who were not 
classified as children at the point of random assignment. The number of individuals is 4,215 in all columns. The 
dependent variable in columns 1–3 is individual earnings. Column 1 includes one observation per individual per 
year from 2008–2012 in which the individual is 24 or older. Column 2 replicates column 1, controlling for the pre-
determined characteristics listed in online Appendix Table 1A. In column 3 we replicate column 1 using data from 
2012 only. Columns 4 and 5 replicate column 1 using employment and household income as the dependent vari-
ables. See notes to Table 3 for definitions of all dependent variables.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.
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Panel A. Cumulative years of exposure to low-poverty neighborhoods

Panel B. Individual earnings ($)

Figure 3. Impacts of Experimental Voucher on Adults by Years since Random Assignment

Notes: These figures plot ITT estimates of the impact of being assigned to the experimental voucher group by the 
number of years since random assignment (RA) for adults. Panel A plots impacts on the total number of years the 
individual lived in a census tract with a poverty rate of less than 20 percent since RA. To construct panel A, we first 
divide the data into two-year groups based on the number of years since RA (e.g., data in the first and second year 
after the calendar year of RA are assigned a value of 2). Using the data within each bin (with two observations per 
adult), we regress the total number of years in which the individual lived in a census tract with a poverty rate below 
20 percent since RA on indicators for being assigned to the experimental and Section 8 voucher groups as well as 
randomization site indicators, following the standard ITT specification used for other outcomes. The solid line is 
a best fit line for the plotted estimates. Tract poverty rates were linearly interpolated using data from the 1990 and 
2000 decennial censuses as well as the 2005–2009 American Community Survey. Panel B plots impacts on individ-
ual earnings, and is constructed using the same approach as in panel A. The regression specification used to estimate 
the coefficients plotted in panel B is analogous to that in column 1 of Table 9, with one observation per adult at age 
24 or above for the relevant years in each bin. We plot the coefficients on the experimental voucher group indicator 
in this figure; the corresponding estimates for the Section 8 voucher group are shown in online Appendix Figure 3. 
See notes to Table 9 for the definition of individual earnings.
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We first verify that the total time of exposure to low-poverty environments 
increases with time since RA for adults who were assigned to the experimental 
voucher group relative to the control group. Prior studies have observed that some 
MTO participants in the experimental group moved back to higher-poverty areas 
over time, while some families in the control group moved to lower-poverty areas 
over time (e.g., Clampet-Lundquist and Massey 2008). We assess the impacts of 
such subsequent moves in panel A of Figure 3. We regress the cumulative number of 
years that the adult lived in a census tract with a poverty rate below 20 percent since 
RA on the MTO treatment indicators. The figure plots the I T T effects of the exper-
imental voucher on cumulative exposure to low-poverty areas versus the number of 
years since RA. It is clear that the total amount of exposure to low-poverty areas 
rises substantially over time in the experimental group relative to the control group 
despite the fact that some families moved again in subsequent years.

Panel B of Figure 3 shows I T T effects of the experimental voucher on adults’ 
individual earnings by years since RA, estimated using regressions analogous to that 
in column 1 of Table 9. The estimated impact on adult earnings is consistently close 
to zero when measuring earnings in the one to ten years after RA, with no evidence 
of the increasing pattern that one would expect if time of exposure in adulthood 
has a causal effect. The results are very similar for the Section 8 treatment (online 
Appendix Figure 3). We conclude that exposure to improved neighborhood envi-
ronments—at least for the range of moves generated by the MTO experiment—has 
little impact on adults’ economic outcomes.40

Together with our findings in Section III, the results in Figure 3 show that it is 
the amount of exposure to better neighborhoods during childhood (rather than total 
lifetime exposure) that matters for long-term economic success. Moreover, these 
findings imply that the MTO treatment effects on children’s outcomes do not arise 
from improvements in family income. Instead, they are likely to be driven by direct 
effects of neighborhood environments on the children or to be mediated by parental 
health and stress, which were improved by the MTO treatments (Ludwig et al. 2011, 
Ludwig et al. 2012).

B. MTO Impacts on Children’s Economic Outcomes

The MTO final impacts evaluation (Sanbonmatsu et al. 2011) found no treatment 
effects on children’s economic outcomes using data from state UI records in 2008 
and survey data from 2008–2009. In Table 10, we reconcile our findings with these 
earlier results. As a reference, we begin in column 1 of Table 10 by replicating the 
specification in column 2 of Table 3, which shows that the MTO treatments had 
substantial positive effects on the individual earnings of younger children (those 

40 Quigley and Raphael (2008) argue that the moves induced by MTO did not change neighborhood envi-
ronments by enough to offset the spatial disadvantages faced by low-skilled minority female household heads. 
Although larger neighborhood changes could have different effects, we note that MTO moves did change neighbor-
hood environments quite substantially. TOT estimates show that adults who moved using an experimental voucher 
lived in lower-poverty areas for approximately five more years on average (as implied by Figure 3) and experienced 
an 18 percentage point reduction in neighborhood poverty (1.5 standard deviations in the US census tract poverty 
distribution) up to the point of the MTO final impacts evaluation, 10–15 years after RA (Ludwig et al. 2013).
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under 13 at RA). The remaining columns present variants of this specification that 
highlight three reasons why our findings differ from prior results.

First, if we had followed earlier MTO work in pooling younger and older MTO 
children, we also would have found no mean effects on earnings in adulthood, as 
shown in column 2 of Table 10. Such pooled estimates hide the positive MTO effects 
on younger children and negative effects on older children.

Second, we measure the earnings of children who were 24 years or older in 2012 
in our data. If instead we had conducted our analysis in 2008—the time of the MTO 
final impacts evaluation—we would have found positive but very imprecisely esti-
mated effects on earnings for children who were below age 13 at RA, as shown in 
column 3. This is because one would have had only 552 observations on earnings 
for children who were less than 13 at RA in 2008. If one had attempted to expand 
the sample by including all children in the analysis, as in column 4, one would have 
again obtained a point estimate close to zero.

Finally, partly because of these data limitations, prior analyses measured earnings 
at very early ages, between the ages of 16–21. Columns 5 and 6 show that we find no 
effects on earnings at these early ages in our data even when we focus on children 
who were less than 13 at RA. The earnings impacts of MTO emerge only after chil-
dren complete education and begin to enter the labor market, as shown in Figure 1.

In sum, there is no inconsistency between our empirical findings and prior MTO 
evaluations. The childhood exposure effects we document here were not apparent 
in prior studies because they did not have adequate long-term data to observe the 

Table 10—MTO Impacts on Children’s Earnings: Comparison to MTO Final Impacts Evaluation

Dependent variable: Individual earnings  
Individual earnings  

measured age 16–21 ($)Measured age ≥ 24 ($)  

Sample: < Age 13 All children < Age 13 All children   < Age 13 All children
2008–2012 2008–2012 2008 2008   Up to 2012 2008

  (1) (2) (3) (4)   (5) (6)

Exp. versus control 1,624.0** 302.5 1,840.9 −236.6   −30.97 −286.3
  (662.4) (578.2) (1339.7) (757.0)   (229.7) (410.8)
Section 8 versus control 1,109.3 −44.06 2,860.1* −213.7   197.4 190.0
  (676.1) (621.5) (1,486.1) (799.9)   (176.6) (351.8)

Observations 8,420 20,043 552 2,851 30,011 3,384

Control group mean 11,270.3 13,807.1 11,615.0 14,531.5 4,033.3 4,923.0

Notes: All columns report ITT estimates from OLS regressions (weighted to adjust for differences in sampling 
probabilities across sites and over time) of an outcome on indicators for being assigned to the experimental voucher 
group and the Section 8 voucher group as well as randomization site indicators. Standard errors, reported in paren-
theses, are clustered by family. The dependent variable is individual earnings in all columns, defined in the notes to 
Table 3. Column 1 replicates the specification in column 2 of Table 3, panel A, and includes children below age 13 
at age of random assignment. This specification includes one observation per individual per year from 2008–2012 
in which the individual is 24 or older. Column 2 replicates column 1, pooling all children (irrespective of age at 
random assignment) in the sample. Columns 3 and 4 replicate columns 1 and 2, limiting the sample to data from 
the 2008 tax year, which was the last year of data available for the MTO final impacts evaluation (Sanbonmatsu et 
al. 2011). Columns 3 and 4 therefore only include children who were 24 or older in 2008. Column 5 replicates col-
umn 1, with one observation per year in which the child is between the ages of 16–21, using all years in which we 
observe individual earnings (1999–2012). Column 6 replicates column 4, restricting the sample to children between 
the ages of 16 and 21 in 2008, as in the MTO final impacts evaluation.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.
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emergence of MTO’s impacts on earnings and other outcomes in adulthood for chil-
dren who moved at young ages.41

C. Multiple Comparisons

Previous research has searched for impacts of MTO in a wide range of subgroups: 
across the five treatment sites, for different races, and for each gender. Given the 
extensive subgroup analysis that has been conducted in the MTO data, one may be 
concerned that our findings of significant effects in certain age subgroups are an 
artifact of multiple hypothesis testing. Of course, examining many subgroups can 
generate p-values that appear to be individually statistically significant purely by 
chance.

To address this concern, we implement a set of parametric F-tests for the null 
hypothesis that there are no subgroup-specific treatment effects in the pooled data. 
These F-tests adjust for the over-rejection rate when analyzing any one subgroup 
separately by using a single joint test across all subgroups in the pooled sample. In 
panel A of Table 11, we test the hypothesis that there is no treatment effect for either 
young children (under 13) or older children (13–18). We regress a subset of the 
outcomes analyzed in Tables 3–6 above on the MTO treatment indicators (Exp and 
S8) interacted with an indicator for being below age 13 at RA (Below13), including 
site dummies as controls. We then test the hypothesis that the Exp and Exp-Below13 
interaction effect are both 0 (row 1), the S8 and S8-Below13 interaction effect are 
both zero (row 2), and both sets of treatment effect estimates are 0 (row 3).

We reject the null of zero treatment effects in both age subgroups with ​p < 0.05​ 
in most cases, especially for the experimental voucher group. For example, we 
reject the null hypothesis that the experimental voucher has no effect on individ-
ual earnings in either age subgroup with ​p = 0.020​. For college quality, we reject 
the hypothesis that the experimental voucher has no effect in either subgroup with ​
p = 0.0006​ and reject the hypothesis that the experimental and Section 8 treatments 
have zero effects in all subgroups with ​p = 0.0020​.

The tests in panel A consider the age-specific subgroups we focus on in this study, 
but not the other subgroups that have been analyzed in the broader literature. In 
panel B, we test the hypothesis that there is no treatment effect in any of the primary 
subgroups that have been studied to date in the MTO data: randomization sites, 
racial groups, gender, and age at RA. As in panel A, we regress outcomes on the 
MTO treatment indicators interacted with all of these subgroup indicators. We then 
test the hypothesis that the experimental indicator and all of its subgroup interac-
tions are 0 (row 1), the Section 8 indicator and all of its interactions are 0 (row 2), 
and both sets of treatment effects are zero (row 3).

The tests in panel B have less power than those in panel A because they consider 
many more subgroups. Nevertheless, when we focus on the outcomes for which we 

41 The MTO final impacts evaluation (Sanbonmatsu et al. 2011) found no significant effects of the MTO treat-
ments on educational outcomes or risky behaviors for children who moved at young ages when they were observed 
as adolescents. The positive treatment effects for younger children show up only when we look at their outcomes 
in adulthood. Hence, our findings differ from the conclusions of prior research on MTO both because we focus 
children who moved at young ages and because we analyze long-term impacts rather than intermediate outcomes. 
We discuss our findings in the context of prior research on MTO in greater detail in the conclusion.
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have the most precise estimates in our baseline analysis—e.g., the college outcomes 
and household income—we reject the null of zero treatment effects in all subgroups 
with ​p < 0.05​ both for the experimental versus control comparison in row 1 and the 
pooled comparison in row 3.

As an alternative to the parametric F-test, we implement a nonparametric permu-
tation test for subgroup heterogeneity using the p-values from our OLS regressions 
as critical values, as in Ding, Feller, and Miratrix (2015). We generate 5,000 “pla-
cebo” samples in which we randomly reassign treatment status to families within 
randomization sites. In each placebo sample, we estimate the experimental and 
Section 8 treatment effects for our 5 core outcomes (individual earnings, college 
attendance, college quality, marriage, and poverty share in zip) for the 12 primary 
subgroups analyzed to date (age above/below 13, male/female, 5 sites, and 3 racial 
groups). Finally, we calculate the fraction of placebo simulations in which there is 
a subgroup where the p-values for all five outcomes (for either the experimental or 
Section 8 group) fall below the corresponding true p-values for the experimental 
treatment estimates in the below-age-13 subgroup. Intuitively, this approach asks, 
“if one were to loop over the 12 subgroups and estimate treatment effects on the 
5 outcomes, what is the chance that one would obtain a set of p-values below the 
actual estimates purely by chance in one of the subgroups?”

We find that fewer than 1 percent of the placebo replications produce a subgroup 
where the p-values for the five outcomes lie below the values we estimate. Hence, 

Table 11—Multiple Comparisons: F-Tests for Subgroup Heterogeneity

Individual
earnings 

2008–2012
($)

Household
income

2008–2012
($)

College 
attendance 
18–20 (%)

College 
quality 

18–20 ($)
Married

(%)

Poverty share
in zip 

2008–2012 (%)
  (1) (2) (3) (4) (5) (6)

Panel A. p-values for comparisons by age group
Exp. versus control 0.0203 0.0034 0.0035 0.0006 0.0814 0.0265
Section 8 versus control 0.0864 0.0700 0.1517 0.0115 0.0197 0.0742
Exp. and Section 8 versus
  control

0.0646 0.0161 0.0218 0.0020 0.0434 0.0627

             
Panel B. p-values for comparisons by age, site, gender, and race groups  
Exp. versus control 0.1121 0.0086 0.0167 0.0210 0.2788 0.0170
Section 8 versus control 0.0718 0.1891 0.1995 0.0223 0.1329 0.0136
Exp. and Section 8 versus
  control

0.1802 0.0446 0.0328 0.0202 0.1987 0.0016

Notes: This table presents p-values for nonzero MTO treatment effects in subgroups for selected outcomes analyzed 
in Tables 3 to 6. In panel A, we regress the outcome on the MTO treatment indicators (Exp and S8) interacted with 
an indicator for being below age 13 at RA (Below13), including site dummies as controls, and clustering standard 
errors by family. We then run F-tests for the null hypothesis that the Exp and Exp-Below13 interaction effect are 
both 0 (row 1), the S8 and S8-Below13 interaction effect are both 0 (row 2), and both sets of treatment effect esti-
mates are 0 (row 3). In panel B, we regress the outcomes on the MTO treatment indicators interacted with the fol-
lowing subgroup indicators: the five randomization sites, racial groups (black, Hispanic, and other), gender, and age 
at RA below 13. As in panel A, we then test the hypothesis that the experimental indicator and all of its subgroup 
interactions are 0 (row 1), the Section 8 indicator and all of its interactions are 0 (row 2), and both sets of treatment 
effects are 0 (row 3). See notes to Tables 3–6 for definitions of the outcome variables.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.
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the permutation test yields an adjusted p-value for the null hypothesis that there is no 
treatment effect on any of the five outcomes of ​p < 0.01​. The permutation test and 
parametric F-tests thus both indicate that the significant treatment effects we detect 
are unlikely to be an artifact of making multiple comparisons.

Finally, it is important to note that we did not reexplore the MTO data arbi-
trarily searching for subgroups that exhibit significant effects. Rather, motivated by 
the quasi-experimental evidence in Chetty and Hendren (2015), we returned to the 
MTO data with a specific hypothesis that we would find larger effects for younger 
children. The fact that the results align closely with this hypothesis further reduces 
the likelihood that they reflect statistical noise driven by multiple hypothesis testing.

V.  Cost-Benefit Analysis and Policy Implications

In this section, we compare the costs and benefits of the MTO interventions and 
discuss the implications of our results for the design of affordable housing poli-
cies, on which the US federal government currently spends $46 billion per year 
(Collinson, Ellen, and Ludwig 2015). We focus on two policy questions. First, 
what are the costs and benefits of an MTO-type experimental voucher program that 
moves families with young children out of traditional project-based public housing 
into lower-poverty neighborhoods? Second, what are the benefits of expanding the 
existing Section 8 housing voucher program? We begin by calculating the benefits 
of the MTO experimental vouchers, focusing on the increased earnings for children 
who move when young. We then quantify the fiscal costs of the program and discuss 
the policy implications of these calculations. We caution that all of the calculations 
reported in this section should be treated as rough estimates because they rely on 
several strong assumptions, starting with the basic premise that the treatment effects 
estimated from the MTO experiment can be extrapolated to evaluate current policy 
interventions.

Earnings Benefits.—The MTO experimental treatment increased individual earn-
ings in early adulthood for children whose families moved before they were age 13 
by $3,477; 30.8 percent of the control group mean (Table 3, column 4). We trans-
late this estimate into a predicted lifetime earnings impact by assuming that (i) this 
30.8 percent increase in individual earnings remains constant over the life cycle; 
(ii) the life cycle profile of earnings for MTO participants follows the US population 
average; and (iii) the real wage growth rate is 0.5 percent, approximately the rate 
of wage growth in the United States over the past decade, and the discount rate is 
3 percent, approximately the current 30-year Treasury bond rate.42

Under these assumptions, moving to a lower-poverty area when young (at age 
eight on average) using the experimental voucher increases total pretax lifetime 
earnings by ​$302,000​.43 The present value of this increase in lifetime earnings is ​

42 As shown in Figure 1, the assumption of a constant 30.8 percent effect is conservative, as the estimated treat-
ment effects increase steadily over the ages where we measure earnings.

43 We estimate the average life cycle earnings profile by tabulating mean earnings by age for a random sample of 
the US population in 2012 from ages 26–65. We then apply a 0.5 percent wage growth rate and a 3 percent annual 
discount rate to this profile to obtain an undiscounted sum of lifetime earnings for the average American of $1.74 
million and a PDV at age eight of $570,000. The younger children in the MTO control group earn 56 percent of the 
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$99,000​ at age eight. For a family with two young children at the point of the move, 
the MTO experimental treatment therefore has an estimated present value of approx-
imately ​$198,000​ in terms of increased children’s earnings.

Fiscal Costs.—Next, we turn to the fiscal cost of the MTO experimental inter-
vention. In calculating this cost, it is important to recognize that the higher earnings 
of children who moved to low-poverty areas at young ages increases tax revenue, 
reducing the cost of the program to the government. We therefore begin by estimat-
ing the effects of the MTO treatments on income tax revenue, a fiscal externality that 
is also a key input for normative analysis (Hendren 2013).

We examine MTO treatment impacts on tax filing rates and federal tax payments 
in adulthood in Table 12. Column 1 shows I T T effects on tax filing rates when chil-
dren are 24 or older. Among younger children (panel A), the experimental voucher 
treatment increases the fraction who file tax returns in their mid to late twenties by 
5.7 pp, while the Section 8 treatment increases the filing rate by 4.8 pp. Column 2 
reports I T T estimates on income taxes paid. The experimental I T T is $184, while 
the Section 8 I T T is $109. The corresponding TOT estimates, reported in column 3, 
show that children whose families moved using the experimental voucher when they 
were young pay an additional $394 in income taxes per year in their mid-twenties.44 
Conversely, the MTO treatments reduce tax filing rates and tax payments by the 
older children, as expected given the negative effects of the treatments on older 
children’s earnings.

We use the estimates in Table 12 to predict the total tax revenue impacts of the 
MTO experimental intervention on families with young children. The experimental 
I T T on tax payments of $184 equals 1.63 percent of mean control group individual 
earnings. Under the same assumptions used to calculate the lifetime earnings gains 
above, this translates to an increase in lifetime tax revenue of ​$5,200​ in PDV at age 
eight. The TOT estimate of $394 implies a PDV increase in tax payments of $11,200 
per child who moves to a lower-poverty area at a young age. If there are two young 
(below age 13) children per family on average, the increased federal tax payments 
would be worth $22,400 in PDV per family moved.

Olsen (2009) estimates that the direct fiscal costs of housing voucher programs 
are similar to or slightly lower than the costs of project-based public housing.45 
Olsen’s estimates imply that the main incremental cost of moving families out of 
public housing using an MTO-type voucher program would be the funding of coun-
selors to help low-income families relocate. The mean MTO counseling costs were 
$1,789 per family counseled (in 2012 dollars) or $3,783 per family who took up a 
voucher (Goering et al. 1999, Table 4). This counseling cost of $3,783 is far smaller 
than the tax revenue gain of $22,400 for each family with two young children that 
is moved. Thus, an MTO-type experimental voucher policy that moves low-income 

mean individual earnings in the US population at age 26. Therefore, the estimated impact on undiscounted lifetime 
earnings is ​0.308 × 0.56 × $1.74m = $302,000​.

44 Our measure of taxes paid does not include tax credits received. We find no significant treatment effects on 
Earned Income or Child Tax Credit amounts. This is consistent with the fact that most of the earnings increases 
induced by the treatments are on the intensive rather than extensive margin (Table 3), and many people move into 
the phase-out region for these credits as they earn more.

45 The costs of public housing are debated because of disagreements about how one should account for the 
depreciation of housing projects.
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families with young children out of high-poverty housing projects will most likely 
save the government money.

Policy Implications.—We now return to the policy questions posed at the begin-
ning of this section. On the narrower question of comparing MTO-type experimen-
tal vouchers to project-based public housing, the data strongly suggest that vouchers 
targeted at families with young children are likely to yield net gains. Indeed, such a 
policy is likely to reduce government expenditure while increasing children’s future 
earnings substantially. However, it is critical to target such vouchers effectively 
to obtain these benefits. First, targeting the vouchers so that families are required 
to move to low-poverty areas is important. The MTO experimental vouchers—
which restricted families to move to low-poverty census tracts—improve children’s 
outcomes much more than existing Section 8 vouchers that give families more flex-
ibility in choosing where to live.46 Second, it is critical to target the vouchers to 

46 An interesting question is why giving families greater choice in where to live appears to reduce long-term 
benefits for children. One possibility is that the neighborhoods chosen by families with unrestricted Section 8 
vouchers have other amenities that families value more than their children’s long-term outcomes. However, the 

Table 12—Impacts of MTO on Federal Income Tax Payments

Filing a tax return (%)
2008–2012 ITT

  Total income taxes paid ($)
    2008–2012 ITT 2008–2012 TOT
  (1)   (2) (3)

Panel A. Children < age 13 at random assignment  
Exp. versus control 5.748***   183.9*** 393.6***
  (2.055)   (62.80) (134.1)
Section 8 versus control 4.789**   109.0** 169.1**
  (2.237)   (54.76) (85.48)
         
Observations 8,420   8,420 8,420

Control group mean 59.3   447.5 447.5
         
Panel B. Children age 13–18 at random assignment  
Exp. versus control −2.079   −175.9* −441.6*
  (2.055)   (91.15) (230.8)
Section 8 versus control −2.248   −127.1 −230.1
  (2.249)   (95.52) (173.2)
         
Observations 11,623   11,623 11,623

Control group mean 65.6   775.2 775.2

Notes: Columns 1 and 2 report ITT estimates from OLS regressions (weighted to adjust for differences in sampling 
probabilities across sites and over time) of an outcome on indicators for being assigned to the experimental voucher 
group and the Section 8 voucher group as well as randomization site indicators. Column 3 reports TOT estimates 
using a 2SLS specification, instrumenting for voucher take-up with the experimental and Section 8 assignment indi-
cators. Standard errors, reported in parentheses, are clustered by family. Panel A restricts the sample to children 
below age 13 at random assignment; panel B includes children between age 13 and 18 at random assignment. The 
estimates in panels A and B are obtained from separate regressions. The dependent variable in column 1 is an indi-
cator for filing a 1040 tax return. In columns 2 and 3, the dependent variable is total taxes paid, defined as the total 
tax field from form 1040 for filers and total taxes withheld on W-2 forms for non-filers. Columns 1 and 2 include 
one observation per individual per year from 2008–2012 in which the individual is 24 or older. Column 3 reports 
TOT estimates corresponding to the ITT estimates in column 3.

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.
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families with young children. As shown above, moving families with older children 
out of existing public housing projects not only has smaller benefits, but actually 
appears to be detrimental. The common practice of putting families on wait lists to 
receive a housing voucher may be particularly inefficient, as this effectively allows 
many families to move to better neighborhoods only when their children grow older.

We next consider the broader issue of offering Section 8 housing vouchers to 
more low-income families. The MTO experiment shows that moving families who 
started out in high-poverty public housing projects to lower-poverty areas has sub-
stantial long-term benefits for children. However, the marginal Section 8 voucher 
may not induce such a move; instead, recent evidence suggests that Section 8 
housing vouchers are frequently used to rent better housing within the same neigh-
borhood rather than move to better neighborhoods (Jacob, Kapustin, and Ludwig 
2015). Consistent with the lack of impact of neighborhood environments, Jacob, 
Kapustin, and Ludwig (2015) find that obtaining a Section 8 voucher through a 
lottery in Chicago has little impact on children’s long-term outcomes for families 
living in unsubsidized private housing. These results again suggest that one may 
need to carefully target housing voucher subsidies to have an impact on children’s 
outcomes. Providing more Section 8 vouchers (or equivalent cash benefits) may 
have little effect on children’s outcomes, but providing MTO-type restricted vouch-
ers that require families to move to better (e.g., low-poverty) neighborhoods may be 
quite valuable.

Our simple calculations neglect many important factors that should be consid-
ered in a more comprehensive cost-benefit evaluation. First, our calculations do 
not account for reductions in transfer payments or gains from better outcomes in 
future generations. As discussed above, the MTO treatments reduce dependence on 
long-term transfer programs such as disability insurance (online Appendix Table 
3c, column 4) and are likely to have persistent effects on subsequent generations 
(Section IIIE). Second, our calculations focus exclusively on the benefits in terms 
of children’s earnings and thereby neglect other benefits, such as improved subjec-
tive well-being and health of adults (Ludwig et al. 2012) and reduced rates of crime 
(Kling, Ludwig, and Katz 2005).

Finally, our calculations ignore any spillover effects on prior residents of the 
neighborhoods where the MTO families moved. Although the MTO experiment 
itself yields no evidence on the magnitude of these spillovers, Chetty and Hendren’s 
(2015) quasi-experimental estimates show that mixed-income areas produce better 
outcomes for children in low-income families while generating, if anything, slightly 
better outcomes for children in higher-income families as well. This finding suggests 
that policies which reduce concentrated poverty may not have detrimental spillover 
effects on higher-income households, but further work that directly estimates these 
spillover effects is required to measure the social benefits of MTO-type policies.

Section 8 voucher did not yield significantly greater benefits than the experimental voucher in terms of adults’ 
earnings or their subjective well-being (Ludwig et al. 2012). Another possibility is that families make suboptimal 
neighborhood choices because of behavioral biases, so that restrictions in the choice set and nudges to encourage 
families to move to lower-poverty areas improve their own private welfare. See Chetty (2015) for further discussion 
of optimal policy and welfare analysis of neighborhood choice in behavioral models.
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VI.  Discussion and Conclusion

This paper has presented a new analysis of the impacts of the Moving to 
Opportunity experiment on children’s long-term outcomes. We find robust evidence 
that children who moved to lower-poverty areas when they were young (below 
age 13) are more likely to attend college and have substantially higher incomes as 
adults. These children also live in better neighborhoods themselves as adults and are 
less likely to become single parents themselves, suggesting that some of the benefits 
of the initial MTO voucher treatment will persist into the following generation (the 
grandchildren of the parents who received the MTO vouchers). In contrast with the 
large gains for young children, moving to lower-poverty areas had negative effects 
on older youth. Finally, we replicate earlier findings that the moves induced by MTO 
had little impact on adults’ economic outcomes.

Our findings show that a simple model featuring linear childhood exposure effects 
coupled with a fixed disruption cost of moving to a distinctly different social environ-
ment can reconcile some of the key findings and debates in the literature on neigh-
borhood effects. First, our results suggest that a substantial fraction of the systematic 
variation in economic outcomes across areas documented in observational studies 
that attempt to control for selection effects (e.g., Brooks-Gunn et al. 1993; Cutler 
and Glaeser 1997; Ellen and Turner 1997; Sampson, Morenoff, and Gannon-Rowley 
2002) can indeed be explained by causal effects of neighborhoods. Since many 
low-income individuals observed in a given area have grown up in that area since an 
early age, childhood exposure effects of the type documented here would generate 
significant differences in mean outcomes across areas in observational data. The 
fact that MTO had no impact on adults’ outcomes (irrespective of exposure time to 
lower-poverty areas in adulthood) implies that neighborhood effects operate primar-
ily through “developmental” effects during childhood (Sampson 2008) rather than 
contextual effects arising from spatial mismatch or other forces (Kain 1968, Wilson 
1996).

Our results also are consistent with recent studies that document the importance 
of childhood exposure effects by studying immigrant assimilation (e.g., Bleakley 
and Chin 2004, Basu 2010, van den Berg et al. 2014) and families that move across 
counties within the United States (Chetty and Hendren 2015). In particular, the 
decline in MTO’s treatment effects for children with age at RA coupled with the 
lack of an impact for adults matches Chetty and Hendren’s (2015) finding that the 
gains from moving to better areas fall linearly with a child’s age at move.

Our findings also complement studies in the child development literature that 
have documented robust correlations between years of exposure to high-poverty 
family environments and later outcomes (e.g., Duncan, Brooks-Gunn, and Klebanov 
1994). Some studies in this literature argue that environmental conditions in the ear-
liest years of childhood (e.g., before age five) have much larger long-term impacts 
than conditions in later years (e.g., Brooks-Gunn and Duncan 1997; Shonkoff and 
Phillips 2000; Heckman 2006). Because we only observe long-term outcomes for 
children who were four or older at random assignment, our results demonstrate that 
improvements in neighborhood environments continue to have large effects on chil-
dren’s long-term outcomes even after early childhood. Whether the impacts would 
be even larger at younger ages remains to be explored.
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Although our findings help reconcile some key findings on neighborhood effects 
on outcomes in adulthood, other pieces of evidence remain to be explained. Most 
notably, MTO’s treatment effects on children’s short-term and medium-term out-
comes are not fully aligned with the long-term impacts documented here (especially 
for boys) in three respects. First, the MTO treatments improved young children’s 
short-term outcomes (e.g., reducing behavioral problems) in the years immediately 
following random assignment, but these gains largely faded away over the next 
decade (e.g., as measured by achievement on standardized tests).47 Yet the positive 
effects of the MTO treatments re-emerge in adulthood, as measured by earnings 
and college attainment.48 Second, MTO had more positive effects for girls than for 
boys for medium-term outcomes (Kling, Liebman, and Katz 2007; Ludwig et al. 
2013), but we find no significant gender differences in MTO’s effects on children’s 
outcomes in adulthood. Third, we find somewhat negative long-run impacts on older 
youth (ages 13 to 18 at RA), but earlier work showed positive initial impacts in 
terms of lower crime and problem behaviors for these children in the first three years 
after RA.

Although further work remains in synthesizing the evidence that has been col-
lected from the MTO experiment, the results of this study demonstrate that offering 
low-income families housing vouchers and assistance in moving to lower-poverty 
neighborhoods has substantial benefits for the families themselves and for taxpay-
ers. It appears important to target such housing vouchers to families with young 
children—perhaps even at birth—to maximize the benefits. Our results provide less 
support for policies that seek to improve the economic outcomes of adults through 
residential relocation. More broadly, our findings suggest that efforts to integrate 
disadvantaged families into mixed-income communities are likely to reduce the per-
sistence of poverty across generations.
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