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The Fundamental Law of Road Congestion: 
Evidence from US Cities+ 

By Gilles Duranton and Matthew A. Turner* 

We investigate the effect of lane kilometers of roads on vehicle-kilo 
meters traveled (VKT) in US cities. VKT increases proportionately 
to roadway lane kilometers for interstate highways and probably 
slightly less rapidly for other types of roads. The sources for this 
extra VKT are increases in driving by current residents, increases 
in commercial traffic, and migration. Increasing lane kilometers for 
one type of road diverts little traffic from other types of road. We find 
no evidence that the provision of public transportation affects VKT. 
We conclude that increased provision of roads or public transit is 

unlikely to relieve congestion. (JEL R41, R48) 

We investigate the effect of lane kilometers of roads on vehicle-kilometers trav 
eled (VKT) for different types of roads in the United States. For interstate high 

ways in metropolitan areas we find that VKT increases one for one with interstate 

highways, confirming the "fundamental law of highway congestion" suggested by 
Anthony Downs (1962, 1992). We also uncover suggestive evidence that this law 

may extend beyond interstate highways to a broad class of major urban roads, a 

"fundamental law of road congestion." These results suggest that increased provi 
sion of interstate highways and major urban roads is unlikely to relieve congestion 
of these roads. 

Our investigation is of interest for three reasons. First, in 2001 an average 
American household spent 161 person-minutes per day in a passenger vehicle. 
These minutes allowed 134 person-kilometer of auto travel at an average speed of 
44 km/h. Multiplying by the number of households in the US and any reasonable 
dollar value of time, we see that the US allocated considerable resources to pas 
senger vehicle travel. That Americans rank commuting among their least enjoyable 
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activities (Alan B. Krueger et al. 2009) buttresses our suspicion that the costs of 

congestion are large. To the extent that travel resources could have been better allo 

cated, understanding congestion and the effect of potential policy interventions is an 

important economic problem. 
Second, since the costs of congestion and of transportation infrastructure are both 

large, transportation policy should be based on the careful analysis of high quality 
data, not on the claims of advocacy groups. Unfortunately, there is currently little 

empirical basis for accepting or rejecting the claims by the American Road and 

Transportation Builders Association that "adding highway capacity is key to help 

ing to reduce traffic congestion," or of the American Public Transit Association that 

without new investment in public transit, highways will become so congested that 

they "will no longer work."1 Our results do not support either of these claims. 

Third, with the increasing certainty of global warming comes the need to manage 
carbon emissions. According to the US Bureau of Transportation Statistics (2007, 
ch. 4) the road transportation sector accounts for about a third of US carbon emis 

sions from energy use. Understanding the implications for VKT of changes to trans 

portation infrastructure is immediately relevant to this policy problem. 
Ours is not the first attempt to measure the effect of the supply of roads on traffic. 

Following Roy E. Jorgensen (1947), a large literature estimates new traffic for partic 
ular facilities after their opening or after a capacity expansion (see Phil B. Goodwin 

1996 and Robert Cervero 2002 for reviews).2 Studies of a particular road provide 
little basis, however, for assessing the impact that changes in infrastructure have on 

traffic in the city at large, a question that is probably more relevant to transportation 

policy. As Cervero's (2002) review shows, few studies take an approach similar to 

ours and assess the effect of road provision on traffic over entire areas. These studies 

generally find a positive elasticity of VKT to the supply of roads, although their esti 

mates of this elasticity vary widely. We improve on this literature in three respects. 
First, we use more, and more comprehensive, data. To begin, we take average 

annual daily traffic (AADT) and a description of the road network from the US 

Highway Performance and Monitoring System (HPMS) for 1983, 1993, and 2003. 

We add a description of individual and household travel behavior taken from the 

1995 Nationwide Personal Transportation Survey and 2001 National Household 

Travel Survey (which we jointly refer to as NPTS). These data track several mea 

sures of traffic and infrastructure for all metropolitan areas in the continental US. 

Together with data describing truck traffic, public transit, sectoral employment, 

population, and physical geography, these data are a powerful tool with which to 

investigate the way that VKT responds to changes in the stock of roads and transit 

in US metropolitan areas. Extant research, on the other hand, examines one specific 
state (usually California) or a small subgroup of adjacent states (usually on the East 

Coast) taking counties or smaller administrative units as the unit of observation.3 

'The quote from the APTA is at www.apta.com/government_affairs/aptatest/documents/testimony060921.pdf. 
The quote from the ARTBA is harder to find and occurs in an undated flyer which is no longer available on their 

website, http://www.artba.org/. 
2 While Jorgensen (1947) is our first modern source, the analysis of the effects of new facilities such as bridges 

and their tariffs on flows of vehicles follows a much older tradition, dating back to Jules E. J. Dupuit (1844). 
3Robert B. Noland (2001) looks at data for the entire US but uses states as units of observation. Since roads in 

San Francisco or Buffalo are unlikely to affect behavior in Los Angeles or New York City, states appear to be "too 
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The resulting estimates of the relationship between infrastructure and traffic in small 

administrative districts from highly urbanized parts of the US are not obviously rel 

evant to national transportation policy. 
Second, we are more careful to establish a causal relationship between roads and 

traffic. Existing literature either does not recognize that roads and traffic may be 

simultaneously determined, or fails to solve this identification problem. To identify 
the causal effect of roads on traffic, we examine both time series and cross-sectional 

variation in our data and exploit three instrumental variables to predict the incidence 

of roads in metropolitan statistical areas (MSAs). These instruments are based on 

the routes of major expeditions of exploration between 1835 and 1850, major rail 

routes in 1898, and the proposed routes of interstate highways in a preliminary plan 
of the network. Our results strongly support the hypothesis that roads cause traffic. 

Third, beyond data and methodological improvements, we extend the conclusions 
of the existing literature in three ways. Within US MSAs, we distinguish between 

interstate highways in their "urbanized" parts and outside. We also use data for a 

broad class of major urban roads. While we cannot implement our preferred identi 
fication strategy for this last class of roads, our OLS results suggest that increases in 
an MSA's stock of major urban roads also lead to large increases in VKT. We deduce 
two further implications of the law of road congestion and confirm that these impli 
cations are consistent with observation. First, we find no evidence that the provision 
of public transportation affects VKT. Second, metropolitan areas with less traffic 

experience a larger increase in travel. Finally, we describe the foundations underly 
ing the fundamental law of highway congestion: people drive more when the stock 
of roads in their city increases; commercial driving and trucking increase with a 

city's stock of roads; and people migrate to cities that are relatively well provided 
with roads. Surprisingly, our data also suggest that a new lane kilometer of roadway 
diverts little traffic from other roads. 

To motivate our econometric strategy, consider a simple model of equilibrium 
VKT. To begin, let R denote lane kilometers of roads in a city, let Q denote VKT, 
and let P(Q) be the inverse demand for VKT. The downward sloping line in Figure 1 

represents an inverse VKT demand curve for a particular city. 
Let C (R, Q) be the total variable cost of VKT, Q, given roads, R. In equilibrium 

all drivers face the same average cost of travel. Holding lane kilometers constant at 

R, the average cost of driving increases with VKT. Hence, the average cost curve 
for VKT is upward sloping. This feature is well documented in the transportation 
literature (Kenneth A. Small and Erik T. Verhoef 2007). The left-most upward slop 
ing curve in Figure 1 represents the supply curve AC(R) associated with roads R. 

Equilibrium VKT, Q*(R) is characterized by 

I. Roads and Traffic: A Simple Framework 

(1) 

large" a unit of observation for two reasons: states aggregate city-level variation that is useful for inference and, as 
we argue in Duranton and Turner (2008), the relevant economic unit appears to be the city. 
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Figure 1. Supply and Demand for Road Traffic 

That is, willingness to pay equals average cost. 

Increasing the supply of road lane kilometers from R to R' reduces the average 
cost of driving for any level of VKT.4 It thus shifts the average cost curve to the 

right. With R lane kilometers of roads in the city, the demand curve intersects with 

the supply curve at Q*, the equilibrium VKT. With R' lane kilometers of road, the 

corresponding equilibrium implies a VKT of Q'*. 
We would like to learn the effect of an increase in the stock of roads on driving in 

cities. That is, we would like to learn about the function Q*(R) defined implicitly by 

equation (1). Indexing cities by i and years by t, our problem may be stated as one 

of estimating, 

(2) ln( Qit) = A0 + p^lri (/?,,) + AxXit + e,„ 

where X denotes a vector of observed city characteristics and e describes unobserved 

contributors to driving. We are interested in the coefficient of R, the road elasticity 
of VKT, p% = dlnQ/dlnR. 

With data describing driving and the stock of roads in a set of cities, we can 

estimate equation (2) with OLS to obtain consistent estimates of p$, provided that 

cov (R, e | X) = 0. In practice, we hope that roads will be assigned to growing cit 

ies and fear that they are assigned to prop-up declining cities. In either case, the 

required orthogonality condition fails. Thus, we are concerned that estimating equa 
tion (2) will not lead to the true value of p% 

4 There are pathological examples where increases in the extent of a road network can reduce its capacity, in 

particular the "Braess paradox" described in Small and Verhoef (2007). We ignore such pathological examples here. 
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As a next step, we partition e into permanent and time-varying components, and 

write 

(3) In (Qu) = A0 + pi In (Rit) + AlXit + + rjit. 

With data describing a panel of cities, we can estimate this equation using city fixed 

effects to remove all time-invariant city effects. This leads to consistent estimates of 

p% provided that cov (R, rj \ X, S) = 0. We also estimate the first difference equation, 

(4) Aln(<2,,) = pgAln(J?,) + A, AX, + At/,, 

where A is the first difference operator. Since all time-invariant factors drop out 

of the first difference equation, we are left with essentially the same orthogonality 

requirement as for equation (3).5 If, in equation (4), we include city characteristics 

in level and initial VKT as control variables, then we account for the possibility that 

these initial conditions may determine traffic growth and be correlated with changes 
in roadway. 

To our knowledge, there is no study of a comprehensive set of metropolitan areas 

in the literature. The extant literature, however, has estimated variants of equations 

(2), (3), and (4) on a small samples of counties or metropolitan areas. While the 

early literature on induced demand at the area level (e.g., Frank S. Koppelman 1972) 
ran only simple OLS regressions in the spirit of equation (2), second generation 
work on the issue typically explored a variety of specifications with fixed effects 

and, sometimes, a complex lag structure. For instance, Mark Hansen et al. (1993) 
and Hansen and Yuanlin Huang (1997) use panels of urban counties and MS As in 

California, while Noland (2001) uses a panel of US states. All find a positive asso 

ciation between VKT and lane kilometers of roadway, with estimated elasticities 

generally ranging between 0.3 and 0.7. 
While equations (3) and (4) improve upon equation (2), we are concerned that 

roads will be assigned to cities in response to a contemporaneous shock to the city's 
traffic. To deal with this identification issue, we model the assignment of roads to 
cities explicitly. This leads to a two-equation model, one to predict the assignment 
of roads to cities, the other to predict the effect of roads on traffic: 

(5) ln {Kit) = B(i + BlXit + B2Zit + p, 

(Qu) — A) + Pr In (/?,) + A | Xit + e,, 

where In (/?,) is predicted lane kilometers of roadway as estimated in the first stage. 
We can obtain consistent estimates of pf provided that we are able to find instru 
ments to satisfy cov (Z,R\X) ^0 and cov (Z, e | X) = 0. 

The possible simultaneous determination of VKT and lane kilometers is recog 
nized by several authors. To instrument for lane kilometers of highways, Cervero 
and Hansen (2002) use about 20 instruments describing politics and physical geog 

5In fact, the two estimates have subtly different properties; see Jeffrey M. Wooldridge (2001, ch. 10). 

This content downloaded from 141.211.4.224 on Thu, 14 May 2015 15:44:00 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


VOL. 101 NO. 6 DURANTON AND TURNER: THE FUNDAMENTAL LAW OF ROAD CONGESTION 2621 

raphy. This approach is subject to the problems associated with the use of a large 
number of instruments. Moreover, we expect the physical geography of cities, cli 

mate in particular, to affect the demand for travel directly, in addition to affecting 
the supply of roads. This violates the condition cov (Z,e\X) =0 and invalidates the 

instruments. Noland and William A. Cowart (2000) use land area and population 

density as instruments for lane kilometers of roads. Again, we expect population 

density to be a determinant of the demand for travel as much as a determinant of the 

supply of roads. Lewis M. Fulton et al. (2000) instrument growth in lane kilometers 

of highways by short lags of the same variables in a first difference specification. 
The exclusion restriction then requires that past changes in road supply be uncor 

rected with contemporaneous changes in demand. Since changes in road supply are 

serially correlated (and they need to be so for the instrument to have any predictive 

power), the exclusion restriction is unlikely to hold when new roads are supplied 
as a result of VKT demand shocks. We postpone a discussion of our own choice of 

instruments. 

Each of the approaches described above relies on different variation in the data 

to estimate p$. Equation (2) relies on cross-sectional variation, while equations (3) 
and (4) use only time series variation. Equation (5) exploits the instrumental vari 

ables we describe later. Should all three methods arrive at the same estimate of 

p%, then all are correct, or all are incorrect, and an improbable relationship exists 

between the various errors and instrumental variables. 

We now turn to a description of our data and estimates of pf based on the estimat 

ing equations presented in this section. 

II. Data and Estimation 

We take the (consolidated) MSA drawn to 1999 boundaries as our unit of obser 

vation. Since each MSA aggregates one or more counties, MSA boundaries often 

encompass much land that is not "urban" in the common sense of the word. MSAs 

are generally organized around one or more "urbanized areas," however, which 

make up the core(s) of the MSA and typically occupy only a fraction of an MSA's 

land area. By using data collected at the level of "urbanized areas" we can distin 

guish more from less densely developed parts of each metropolitan area. 

To measure each MSA's stock of interstate highways and traffic, we use the 

US HPMS "universe" and "sample" data for 1983, 1993, and 2003.5 The Data 

Appendix provides a more detailed description of the HPMS. The Federal Highway 
Administration in the US Department of Transportation (DOT) collects these data, 

which are used by the federal government for planning purposes and to apportion 

federal highway money. For each year, for the entire universe of the interstate high 

way system within their boundaries, states must report the length, number of lanes, 

and the number of vehicles per lane per day passing any point. This last quantity is 

referred to as the average annual daily traffic (AADT). We use a county identifier 

6The HPMS is available annually. We focus on 1983, 1993, and 2003 because these dates are close to census 

years and to the years for which we have data on public transportation. In addition, we sometimes make use of the 

1995 and 2001 HPMS. 
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to match every segment of interstate highway to an MSA. We then calculate lane 

kilometers, VKT, and AADT per lane km for interstate highways within each MSA. 

In the sample data states report the same information (and more) for every seg 
ment of interstate highway within urbanized areas. By merging the sample with the 

universe data we distinguish urban from non-urban interstates within MSAs. 

The sample data also report information about a sample of other roads within 

urbanized areas. This sample is intended to represent all major roads in urban 

ized areas within the state. From the sample data we calculate road length, loca 

tion, AADT, and share of truck traffic for all major roads in the urbanized area. 

The HPMS sample data also assign each segment to one of six functional classes, 
described in DOT (1989). One of these classes is "interstate highway." We group 
four of the remaining five classes; "collector," "minor arterial," "principal arte 

rial," and "other highway" into a measure of major urban roads, omitting the last 

class, "local roads."7 Our definition of "major urban road" thus includes all nonlocal 

roads that are not interstate highways. Within urbanized areas, interstates represent 
about 1.5 percent of all road kilometers and 24 percent of VKT, while major urban 

roads represent 27 percent of road kilometers and another 62 percent of VKT (DOT 

2005a). The Data Appendix provides more detail. 

Table 1 presents MSA averages of AADT for the 228 MSAs with nonzero inter 

state mileage in 1983, 1993, and 2003. These data show that AADT, the number of 

vehicles passing any point on an average lane of interstate highway, increased from 

4,832 in 1983 to 9,361 in 2003. Thus, at the end of our study period, an average 
lane of interstate highway carries almost twice as much traffic as at the beginning. 
We also find that lane kilometers of interstate highways increase by about 6 percent 
between 1983 and 1993 and between 1993 and 2003. Together, the increase in lane 

kilometers and the increase in AADT imply that interstate VKT in an average MSA 

more than doubled over our 20-year study period. 
Table 1 also presents descriptive statistics for major urban roads. Major roads rep 

resent between three and five times as many lane kilometers as interstate highways, 
but only twice as much VKT. Note that urbanized area boundaries, unlike MSA 

boundaries, are not constant over our three cross sections, so the dramatic increase 
in urbanized area VKT and lane kilometers over our study period may partly reflect 
increases in the extent of urbanized areas. 

A. Cross-Sectional Estimates of the Roadway Elasticity of VKT 

We now turn to estimating the elasticity of MSA VKT to lane kilometers for each 
of the following categories of roads and travel: all MSA interstates (IH), urbanized 
MSA interstates (IHU), nonurban MSA interstates (IHNU), and major urban roads 

(MRU). 
Table 2 reports estimates of the elasticity of MSA VKT to lane kilometers from 

univariate OLS regressions. Each panel considers a different type of road: MSA 
interstates in panel A, urbanized MSA interstates in panel B, major urban roads in 

7 
Loosely, a "local road" is one that primarily provides access to land adjacent to the road, and every other class 

of road serves to connect local roads. The HPMS does not require states to report data on local roads, although some 
local roads appear in the data. 
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Table 1—Summary Statistics for Our Main HPMS 
and Public Transportation Variables 

Year: 1983 1993 2003 

Mean daily VKT (IH, '000 km) 

Mean AADT (IH) 

Mean lane km (IH) 

Mean lane km (IH, per 10,000 population) 

Mean daily VKT (MRU, '000 km) 

Mean AADT (MRU) 

Mean lane km (MRU) 

Mean VKT share urbanized (IHU/IH) 
Mean lane km share urbanized (IHU/IH) 
Mean share truck AADT (IH) 
Peak service large buses per 10,000 population 

Peak service large buses 

Number MSAs 
Mean MSA population 

7,777 11,905 15,961 

(16,624) (24,251) (31,579) 
4,832 7,174 9,361 

(2,726) (3,413) (4,092) 
1,140 1,208 1,280 

(1,650) (1,729) (1,858) 
26.7 24.3 22.1 

(26.9) (20.9) (16.4) 
14,553 22,450 31,242 

(36,303) (49,132) (70,692) 
3,146 3,646 3,934 

(847) (947) (1,059) 
3,885 5,071 6,471 

(7,926) (9,119) (12,426) 
0.38 0.44 0.48 
0.29 0.36 0.40 
0.11 0.12 0.13 
1.20 1.09 1.34 

(1.02) (0.98) (0.98) 
169 165 217 

(563) (562) (742) 
228 228 228 

753,726 834,290 950,054 

Notes: Cross MSA means and standard deviations in parentheses. IH denotes interstate high 
ways for the entire MSA. IHU denotes interstate highways for the urbanized areas within an 
MSA. MRU denotes major roads for the urbanized areas within an MSA. 

Table 2—vkt as a Function of Lane Kilometers, Univariate OLS by Decade 

1983 1993 2003 
Year: (1) (2) (3) 
Panel A. Dep. var.: In VKT for interstate highways, entire MSAs 

In (IH lane km) 1.24*** 1.25*** 1.23*** 

(0.04) (0.02) (0.02) 
R2 0.86 0.87 0.88 

Panel B. Dep. var.: In VKT for interstate highways, urbanized areas within MSAs 

In (IHU lane km) 1.26*** 1.23*** 1.20*** 

(0.02) (0.02) (0.02) 

Panel C. Dep. var.: In VKT for major roads, urbanized areas within MSAs 

In (MRU lane km) 1.08*** 1.13*** 

(0.02) (0.01) 

Panel D. Dep. var.: In VKT for interstate highways, outside urbanized areas within MSAs 

In (IHNU lane km) 1.06*** 1.03*** 1.00*** 

(0.03) (0.04) (0.04) 

Notes: The same regressions for different types of roads are performed in all four panels. All 

regressions include a constant. Robust standard errors in parentheses; 228 observations for 

each regression in panel A and 192 in panels B-D. 

♦♦♦Significant at the 1 percent level. 

♦♦Significant at the 5 percent level. 

♦Significant at the 10 percent level. 
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Table 3—Vkt as a Function of Lane Kilometers, Ols by Decade 

1983 1983 1983 1993 1993 1993 2003 2003 2003 
Year: (i) (2) (3) (4) (5) (6) (7) (8) (9) 

Panel A. Dependent variable: In VKT for interstate highways, entire MSAs 
In (IH lane km) 0.92*** 0.94*** 0 92*** 0.73*** 0.76*** Q -7-7*** 0.71*** 0.75*** 0.76*** 

(0.06) (0.06) (0.05) (0.05) (0.04) (0.04) (0.05) (0.04) (0.04) 

In (population) 0.43*** 0.42*** 1.01*** 0.54*** 0.51*** 0.46* 0.53*** 0.49*** 0.39 

(0.04) (0.05) (0.37) (0.04) (0.04) (0.25) (0.04) (0.04) (0.35) 

Elevation range -0.057 -0.076 -0.027 -0.038 -0.026 -0.030 

(0.060) (0.054) (0.056) (0.054) (0.053) (0.048) 

Ruggedness 6.81* 5.29 5.86* 3.90 5.72* 3.46 

(3.46) (3.24) (3.00) (3.00) (3.06) (3.11) 

Heating degree days -0.014*** -0.015*** -0.012*** -0.013*** -0.011*** -0.013*** 

(0.004) (0.01) (0.003) (0.004) (0.003) (0.004) 

Cooling degree days -0.019* -0.027** -0.019*** -0.022** -0.019** -0.020** 

(0.010) (0.012) (0.007) (0.009) (0.007) (0.009) 

Sprawl 0.0059* 0.0061* 0.0033 0.0019 0.0021 0.0016 

(0.0031) (0.0036) (0.0028) (0.0029) (0.0027) (0.0027) 
Census divisions Y Y Y Y Y Y 
Past populations Y Y Y 
Socioeconomic Y Y Y 

characteristics 
R2 0.93 0.94 0.95 0.94 0.95 0.96 0.94 0.96 0.96 

Panel B. Dependent variable: In VKTfor interstate highways, urbanized areas within MSAs 

In (IHU lane km) 1.04*** 1.05*** 1.06*** 0.95*** 0.97*** 1.00*** 0.92*** 0.94*** 0.97*** 

(0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03) (0.03) (0.04) 

Panel C. Dependent variable: In VKTfor major roads, urbanized areas within MSAs 

In (MRU lane km) 0.90*** 0.89*** 0.88*** 0.72*** 0.78*** 0.80*** 0.66*** 0.67*** 0.70*** 

(0.03) (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 

Panel D. Dependent variable: In VKT for interstate highways, outside urbanized areas within MSAs 

In (IHNU lane km) 0.83*** 0.85*** 0.84*** 0.81*** 0.83*** 0.82*** 0.82*** 0.84*** 0.83*** 

(0.05) (0.04) (0.03) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) 

Notes: The same regressions for different types of roads are performed in all four panels. All regressions include 
a constant. Robust standard errors in parentheses; 228 observations for each regression in panel A and 192 in pan 
els B-D. 

""Significant at the 1 percent level. 

"Significant at the 5 percent level. 
* 
Significant at the 10 percent level. 

panel C, and nonurban MSA interstates in panel D. Columns 1 to 3 consider the 

1983, 1993, and 2003 cross sections in turn. 

Depending on the decade, the elasticity of MSA interstate highway VKT with 

respect to lane kilometers is between 1.23 and 1.25. Focusing only on interstate 

highways in the urbanized part of MSAs yields similar results. For major urban 

roads and nonurban MSA interstates, we obtain slightly lower estimates between 
1.00 and 1.14. 

In Table 3, we consider richer specifications. In panel A of this table, the dependent 
variable is again MSA interstate VKT. Columns 1 to 3 consider the 1983 cross sec 
tion. In the first column we include our variable of interest, the log of lane kilometers 
of road, MSA population, and a constant. In the second we add nine census division 

dummy variables along with five measures of physical geography: elevation range 
within the MSA, the ruggedness of terrain in the MSA, two measures of climate, and 
a measure of how dispersed is development in the MSA. Details about these variables 
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are available in the Data Appendix. In column 3 we also add socioeconomic controls: 

share of population with at least some college education, log mean income, share 

poor, share of manufacturing employment, and an index of segregation. We also add 

decennial population variables from 1920 to 1980 to control for the long-run growth 
of MSAs. Because past populations and socioeconomic variables are likely to cor 

relate with unobserved attributes of MSAs that determine the demand for driving, 

regressions including these variables are useful robustness checks. Columns 4 to 6 

replicate these regressions for 1993, while columns 7-9 are for 2003. 

Depending on the decade, the elasticity of MSA interstate highway VKT with 

respect to lane kilometers ranges between 0.71 and 0.94 and is estimated precisely 
in each specification. While some estimates are statistically different from one, all 

are positive and greater than 0.71. 

Turning to the other explanatory variables, we also note that the elasticity of MSA 

interstate highway VKT with respect to population is much less than one in all 

specifications. This will persist in nearly all of our estimations and suggests that 

people in larger cities drive much less per capita than they do in smaller cities. We 

consider the possible endogeneity of this variable below. We also note that VKT is 

higher in MSAs with mild weather, neither cold nor hot. For the other measures of 

geography, including the extent to which development is scattered or compact, as 

measured by the variable "sprawl," we do not find a robust association with MSA 

interstate highway VKT. 

Panel B of Table 3 is similar to panel A, but the dependent variable and the mea 

sure of roads are based on urban interstates. The estimations in panel B suggest that 

the urban interstate VKT elasticity of urban interstate lane kilometers is closer to 

one and larger than for all interstates. Panels C and D of Table 3 are also similar to 

panel A, but investigate major urban roads and nonurban interstates. These results 

are close to those presented in panel A. 

Columns 1-4 of Table 4 replicate the sole specification of Table 2 and the three 

specifications of Table 3 for all interstate highways, but pool the three cross sections. 

Unsurprisingly the estimates for the roadway elasticity of VKT are in between the 

estimates of Table 3 and Table 2 for the different decades. Column 3, which controls 

for population and geography but not for (possibly endogenous) socioeconomic 

characteristics of MSAs, is our preferred specification. Hence, we take the value of 

0.86 as our preferred OLS estimate of the elasticity of MSA interstate highway VKT 

with respect to lane kilometers (but note that OLS is not our preferred estimation 

method). 

Appendix Table 1 (in the online Appendix) reports further regressions pooling all 

three cross sections for different types of roads in urbanized areas and outside. The 

results of this table generally confirm those of Tables 2 and 3, with the caveat that 

some changes in roads and traffic may reflect changes in urbanized area boundaries. 

B. Fixed Effects and Time-Series Estimates of the Roadway Elasticity of VKT 

Thus far we have reported estimates of that exploit cross-sectional variation. 

We now turn to estimates of p% based on time-series variation. Because the data are 

fully comparable over time only for all interstate highways within MSAs, we focus 

on this type of road. 
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Table 4—VKT as a Function of Lane Kilometers, Pooled OLS 

All All All All All All All w.IHU Big Small 

MSA sample (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Dependent variable: In VKT for interstate highways, entire MSAs 

In (IH lane km) 1 24*** 0.82*** 0.86*** 0.85*** 1.05*** 1.06*** 1.05*** 0.95*** 1.05*** 1.12*** 

(0.02) (0.05) (0.05) (0.04) (0.04) (0.04) (0.04) (0.03) (0.04) (0.08) 
In (population) 0.48*** 0.44*** q 32*** 0.34*** 0.39*** 0.32*** q 44*** 0.31** 

(0.04) (0.04) (0.12) (0.09) (0.09) (0.09) (0.11) (0.12) 
Geography Y Y 
Census divisions Y Y 
Socioeconomic Y Y 

characteristics 
Past populations Y 
MSA fixed effects Y Y Y Y Y Y 

R2 0.88 0.94 0.95 0.96 0.94 0.94 0.95 0.94 0.96 0.93 

Notes: All regressions include year effects. Robust standard errors in parentheses (clustered by MSA in columns 

1-4). Complete sample of 228 MSAs (684 observations) with interstate highways in columns 1-7; 192 MSAs (576 
observations) with urban interstate highways in column 8; 114 MSAs (342 observations) above the median popu 
lation size in 1990 in column 9; 114 MSAs (342 observations) below the median population size in 1990 in col 
umn 10. 

"♦Significant at the 1 percent level. 
** 

Significant at the 5 percent level. 
* 
Significant at the 10 percent level. 

Columns 5-10 of Table 4 estimate equation (3) by including MSA fixed effects in 
our cross-sectional regression. Because they condition out permanent determinants 
of VKT for each city that are potentially correlated with roadway, we prefer the 

specifications with MSA fixed effects to those without. In column 5 we replicate 
column 1 of the same table but include MSA fixed effects. In column 6, we augment 
the specification of column 2 with MSA fixed effects. In column 7, we repeat this 
for column 4. In column 8 we replicate column 6 using only the 192 MSAs that have 
urban interstate highways in all years instead of the 228 MSAs that report interstate 

highways in all three of our sample years. Columns 9 and 10 run the same regression 
again on MSAs with below- and above-median 1990 population size, respectively. 
All the fixed-effect estimates of the interstate VKT elasticity of interstate lane kilo 
meters are slightly above one, except for column 8 where the estimate is slightly 
below one. This is obtained for the more restricted sample of MSAs with interstate 

highways in their urbanized area. Given the similarity between the results, however, 
we do not concern ourselves further with sample selection. While it is estimated 

precisely in all specifications, p$ is not statistically different from one at standard 
levels of confidence in columns 5 through 10. Overall, we note that including MSA 
fixed effects leads to slightly higher estimates of p$. 

We now estimate the interstate VKT elasticity of interstate lane kilometers using 
our first difference estimating equation (4). Unlike the fixed-effects estimations of 
Table 4, in the first difference regressions of Table 5, we allow the levels of MSA ini 
tial characteristics to affect the growth of traffic. Using our three cross sections we 

compute two cross sections of first differences. In panel A of Table 5 we pool these 
two cross sections of first differences to estimate equation (4). Our dependent vari 
able is the ten-year change in interstate VKT. In column 1, we include only a constant 
and year dummies as controls. In column 2, we add changes in MSA population. 
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Table 5—Change in VKT as a Function of Change in Lane Kilometers 

All All All All All Lane f Lane f Lane J. All All 
MSA sample (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Panel A. Dependent variable: Aln VKT for interstate highways, entire MSAs, OLS 

Aln (IH lane km) 1.04"* 1.05*** 1.02*** 1.00*** 0.93*** 1.09*** 

(0.05) 
Aln (population) 

In (initial VKT) 

Geography 
Census divisions 
Socioeconomic 

characteristics 
Past populations 
MSA fixed effects 

(0.05) (0.04) (0.04) (0.04) (0.06) 
0.34*** 0.40*** 0.44*** 0.39*** 0.31* 

(0.10) (0.10) (0.11) (0.13) (0.17) 
-0.047*** -0.057*** -0.12*** 

(0.006) 

0.87 0.87 0.89 

(0.007) 
Y 
Y 

0.90 

(0.02) 
Y 
Y 
Y 

0.91 

0.90*** 

(0.06) 
0.45** 

(0.21) 
-0.15*** 

(0.03) 
Y 
Y 
Y 

0.82*** 1.03*** 1.03* 

(0.09) 
0.16 

(0.22) 
-0.13*** 

(0.04) 
Y 
Y 
Y 

(0.05) 

0.91 0.94 0.69 

Y 

0.91 

(0.05) 
0.51 *H 

(0.20) 

Y 
0.94 

Panel B. Dependent variable: Aln VKT for interstate highways, entire MSAs, TSLS 

Aln (IH lane km) 1.05*** 1.02*** 1.00*** 0.92*** 1 07*** 0.90*** 0.82*** 1.03*** 

(0.05) (0.04) (0.04) (0.04) (0.06) (0.05) (0.09) (0.03) 
Aln (population) 0.093 0.34** 0.45 1.02** -0.16 1.14 1.50 0.62* 

(0.18) (0.16) (0.32) (0.45) (0.29) (0.72) (1.45) (0.37) 
First stage statistic 63.3 54.3 29.2 23.9 45.7 12.3 4.05 20.1 

Notes: All regressions include a constant and decade effects. Robust standard errors clustered by MSA in paren 
theses. 456 observations for each regression in columns 1-5 and 9-10, 205 in columns 6-7 which consider only 
increases in lane kilometers of more than 5 percent, and 115 in column 8 which considers declines in lane kilome 
ters greater than 5 percent. Instrument for Aln (population) is expected population growth based on initial compo 
sition of economic activity. 

♦"Significant at the 1 percent level. 

**Significant at the 5 percent level. 

♦Significant at the 10 percent level. 

In column 3, we also control for initial VKT. In column 4, we add physical geog 
raphy and census division dummies. Column 5 adds decennial MSA population 
levels from 1920 to 1980 and initial socioeconomic characteristics of cities. In each 

case, our point estimate of p$ is very close to one and is precisely estimated. 
Columns 6-8 consider more restricted samples of observations. Column 6 repli 

cates column 2 using only observations with increases in lane kilometers greater than 

5 percent. Column 7 uses the same selection rule to replicate column 5. Column 8 

replicates column 5 again but this time using only observations with declines in lane 

kilometers greater than 5 percent. The results for large increases in lane kilometers are 

the same as for the whole sample of MS As. The elasticity we estimate in column 8 

is 0.8. These estimations do not allow us to determine whether the response of traffic 

to roads is nonlinear in the amount of change to the road network, or if metropolitan 
areas experiencing large changes are different from those experiencing small changes.8 

Finally, column 9 of Table 5 estimates equation (4) including MSA fixed effects 

and year fixed effects as controls, while column 10 adds MSA population. These 

8 
Apart from measurement error, decreases in lane kilometers are likely to reflect temporary closures while 

increases reflect new and permanent construction. 
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estimates are second difference estimates that exploit changes in the rate of change 
of roads and traffic. Strikingly, these regressions also estimate the interstate VKT 

elasticity of interstate highways to be very close to one. 

In panel B of Table 5, we repeat the first difference regressions of panel A, except 
that we instrument for the change in population. Following Timothy Bartik (1991) 
and others after him, we construct our instrument for MSA level population growth 
from the initial shares of sectoral employment in the MSA and the national growth 
rate of each sector during the study period. Interacting these quantities yields the 

MSA population growth that would occur if all MSA sectors grew at the national 

average rate with sectoral shares constant. To construct our population growth 
instrument we use employment data for each MSA and the entire US for two-digit 
sectors from the County Business Patterns. 

Despite the strength of the instrument, when running these regressions on a com 

plete sample of MSAs, the standard errors for the coefficient on population change 
are much larger than in OLS. The OLS range for this coefficient is between 0.3 and 

0.5. When instrumenting, the range is broader, from close to zero to above unity. 
We draw two conclusions from this second panel. First, there is a suggestion that 

the TSLS coefficient on population changes is above its OLS value when more con 

trols are introduced. This is consistent with population migrating to MSAs where 

VKT increases more slowly, all else equal. Second, the coefficient on changes in 

lane kilometers of roads is unaffected by this change in estimation strategy. This 

strongly suggests that even if population is endogenous, our estimate for the elas 

ticity of interstate highway VKT is unaffected. Our preferred estimate for the road 

way elasticity of VKT in Table 5 is 1.00 from column 3 in panel B. This is the 

first-difference estimate for our preferred specification that takes into account the 

endogeneity of population. 
In the online Appendix, we perform a number of further checks on our first differ 

ence results. Appendix Table 2 presents regressions conducted on each of our two 
cross sections of first differences separately. They confirm results of Table 5 but, like 
Table 3, indicate a slight decrease of over time. In Appendix Tables 3 and 4 we 

perform two simple falsification tests. In Appendix Table 3 we focus on changes in 
VKT between 1993 and 2003 as dependent variable. We show that the coefficient on 

contemporaneous changes in lane kilometers of interstate highways (i.e., between 
1993 and 2003) is unaffected by the inclusion in the regression of earlier changes 
in lane kilometers of interstate highways (i.e., between 1983 and 1993). The coef 
ficient on earlier changes is always insignificant. In Appendix Table 4, we focus on 

changes in VKT between 1983 and 1993 as dependent variable. We show that the 
coefficient on contemporaneous changes in lane kilometers of interstate highways 
(i.e., between 1983 and 1993) is unaffected by the inclusion in the regression of later 

changes in lane kilometers of interstate highways (i.e., between 1993 and 2003). 
The coefficient of the later changes variable is small, positive, and significant when 
we include contemporaneous changes in the regression.9 

''This may reflect either by serial correlation in roadway changes or a lagged response in the supply of roadway 
to increases in VKT. 
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C. IV Estimates of the Roadway Elasticity of VKT 

In order for estimates of equations (2), (3), and (4) to result in consistent esti 

mates, we require that the unobserved error be uncorrelated with the stock of roads 

(or changes in this stock). If the demand for VKT helps to determine an MSA's 

road network, then our measure of roads is endogenous, and this assumption does 

not hold. To address this possibility, we estimate the instrumental variables system 
described in equation (5). 

We rely on three instruments: planned interstate highway kilometers from the 1947 

highway plan; 1898 railroad route kilometers; and the incidence of major expeditions 
of exploration between 1835 and 1850. Nathaniel Baum-Snow (2007), Guy Michaels 

(2008), and Duranton and Turner (2008) also use planned interstates as an instrument 

for features of the interstate system. Duranton and Turner (2008) use the 1898 railroad 

system for the same purpose. The exploration routes variable is new to the literature.10 

Our measure of MSA kilometers of 1947 planned interstate highways is based on 

a digital image of the 1947 highway plan created from its paper record (US House 

of Representatives 1947) and converted to a digital map as in Duranton and Turner 

(2008). Kilometers of 1947 planned interstate highway in each MSA are calculated 

directly from this map. Figure 2 shows an image of the original plan. Our measure 

of MSA kilometers of 1898 railroads is based on a digital image of a map of major 
railroad lines in 1898 (Charles P. Gray c. 1898). This image was converted to a digi 

tal map as in Duranton and Turner (2008). Kilometers of 1898 railroad contained 

in each MSA are calculated directly from this map. Figure 3 shows an image of the 

original railroad map. Our measure of early exploration routes is based on a map of 

routes of major expeditions of exploration of the US between 1835 and 1850 (US 

Geological Survey 1970). An image based on this map is reproduced in Figure 4. 

Note that, in addition to exploration routes, this map shows the routes of major roads 

established prior to 1835 in the more settled eastern part of the country. The Data 

Appendix provides more detail about these variables. 

Common sense suggests that all three instruments should be relevant. The 1947 

plan describes many interstate highways that were subsequently built. Many 1898 

railroads were abandoned and turned into roads. Many current interstate highways 
follow the same routes taken by early explorers. Estimates of the reduced-form 

equation predicting roads as a function of our instruments confirm this intuition. In 

almost all specifications predicting interstate lane kilometers, the first-stage statistic 

for the instrumental variables is large enough to pass the weak instrument tests pro 

posed in James H. Stock and Motohiro Yogo (2005). We generally report the results 

of conventional TSLS estimations, but in the few cases where our instruments are 

weak, we also report the corresponding LIML estimates." 

A qualifier is important here. Our instruments are good predictors of MSA-level 

stocks of interstate highways and urban interstate highways. They are not good pre 

dictors of MSA level stocks of major roads or of nonurban interstate highways. 

10The discussion of the 1947 highway plan and 1898 railroad routes is derived from, and abbreviates more 

extensive discussions of, these variables by these earlier authors, particularly Duranton and Turner (2008). 
11 Limited information maximum likelihood (LIML) is a one-stage IV estimator. Compared to TSLS, it provides 

more reliable point estimates and test statistics with weak instruments. 
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Figure 2. 1947 US Interstate Highway Plan 

Source: Image based on US House of Representatives (1947). 

Figure 3. 1898 US Railroads 

Source: Image based on Gray (c. 1898). 

For this reason, we conduct IV estimations only for interstate highways and urban 
interstate highways. 

We now turn to the conditional exogeneity of our two instruments. The 1947 

highway plan was first drawn to "connect by routes as direct as practicable the 

principal metropolitan areas, cities and industrial centers, to serve the national 
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Figure 4. Routes of US Major Expeditions of Exploration, 1835 to 1850 

Source: Image based on US Geological Survey (1970, p. 138). 

defense and to connect suitable border points with routes of continental impor 
tance in the Dominion of Canada and the Republic of Mexico" (US Federal 

Works Agency, Public Roads Administration 1947, cited in Michaels 2008). That 

the 1947 highway plan was, in fact, drawn to this mandate is confirmed by both 

econometric and historical evidence reviewed in Duranton and Turner (2008). In 

particular, in a regression of log 1947 kilometers of planned interstate highways 
on log 1950 population, the coefficient on log 1950 population is almost exactly 
one, a result that is robust to the addition of various controls. On the other hand, 

population growth around 1947 is uncorrelated with planned highway kilometers. 

Thus, the 1947 plan was drawn to fulfill its mandate and connect major population 
centers of the mid-1940s, not to anticipate future population or traffic demand. 

Note that the exclusion restriction associated with equation (5) requires the 

orthogonality of the dependent variable and the instruments conditional on control 

variables. This observation is important. Cities that receive more roads in the 1947 

plan tend to be larger than cities that receive fewer. Since we observe that large cit 

ies have higher levels of VKT, 1947 planned interstate highway kilometers predicts 
VKT by directly predicting population and indirectly by predicting 1980 road kilo 

meters. Thus the exogeneity of this instrument hinges on having an appropriate set 

of controls, population in particular. 
Next consider the case for the exogeneity of the 1898 railroad network. This net 

work was built, for the most part, during and immediately after the civil war, and 

during the industrial revolution. At this time, the US economy was much smaller 

and more agricultural than during our study period. In addition, the rail network was 

developed by private companies with the intention to make a profit from railroad 

operations in the not too distant future. See Robert Fogel (1964) and Albert Fishlow 
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(1965) for two classic accounts of the development of US railroads. As for the 

highway plan, the same qualifying comment applies: instrument validity requires 
that, conditional on control variables, rail routes be correlated with the dependent 
variable only through contemporaneous interstate highways. With this said, after 

controlling for historical populations and physical geography, it is difficult to 

imagine how a rail network built for profit could anticipate the demand for vehicle 
travel in cities 100 years later, save through its effect on roads. 

Finally, consider the case for the exogeneity of routes of expeditions of explora 
tion between 1835 and 1850. Among these routes are: a Mexican boundary survey, 
the Whiting-Smith 1849 search for a commercial route between San Antonio and El 

Paso, the 1849 Warner-Williamson expedition in search of a route from Sacramento 
to the Great Basin, the 1839 Farnham-Smith expedition from Peoria to Portland, 
and the Smith scientific expedition to the Badlands of South Dakota. Some of these 

expeditions were explicitly charged with finding an easy way from one place to 

another, and it is hard to imagine that this objective was not also important to the 
others. While we expect that these early explorers were drawn to attractive places, 
after controlling for historical populations and physical geography it is difficult to 

imagine how these explorers could select routes that anticipate the demand for vehi 
cle travel in cities 150 years later, save through their effect on roads. 

Table 6 presents instrumental variables estimations where our dependent vari 
able is all MSA interstate VKT. In panel A we use all three of our instruments, and 
we pool our three decennial cross sections. Column 1 includes only interstate lane 
kilometers and decade effects as controls. Column 2 adds population as a control, 
column 3 adds our physical geography variables and census division indicators, col 
umn 4 adds our other city-level demographic variables, and column 5 adds decennial 

population levels from 1920 to 1980. We pass standard overidentification tests in all 

specifications and the values of our first-stage statistics suggest that our instruments 

are not weak, or are near the critical values suggested by Stock and Yogo (2005). In 
columns 2 through 5 we see that our estimates of p% are within one standard error 
of one. In column 1, the coefficient of interstate highways is larger because of the 
correlation between interstate highway lane kilometers and population levels. 

We note that the IV estimates of the roadway elasticity of VKT are slightly higher 
than their OLS counterparts (in Tables 3 and 4) by 0.1 to 0.2. While the differences 
between IV and OLS are not all significant, they are suggestive of a negative feed 
back between VKT and the allocation of roadway. More precisely, lane kilometers of 
interstate highways appear to be allocated to MSAs with a lower demand for travel. 
This would be consistent with the finding of Duranton and Turner (2008) that there 
is more road construction in cities that experience negative shocks to employment. 

In columns 3, 4, and 5 of panel A our instruments are near the critical values sug 
gested in Stock and Yogo (2005), so in panel B we present the corresponding LIML 
estimates. These estimates are essentially identical to the TSLS estimates of panel A. 

In panels C, D, and E, we repeat the TSLS estimates of panel A using each of our 
instruments alone. We find that using the 1947 highway instrument alone results 
in slightly higher estimates, that using 1898 railroads alone results in essentially 
identical estimates, and that using 1835 exploration routes alone results in slightly 
lower estimates. In all, the IV estimates presented in panels A-E of Table 6 strongly 
suggest that the interstate VKT elasticity of interstate highways is close to one. 
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Table 6—VKT as a Function of Lane Kilometers, IV 

(1) (2) (3) (4) (5) 
Panel A (TSLS). Dependent variable: In VKT for interstate highways, entire MSAs 
Instruments: In 1835 exploration routes, In 1898 railroads, and In 1947 planned interstates 

In (IH lane km) 1.32*** 0.92*** 1.03*** 1.01 *** 1.04*** 
(0.04) (o! io) (0.11) (0-12) (0.13) 

In (population) 0.40*** 0.30*** O.34*** 0.23* 
(0.07) (0.09) (o! io) (0.12) 

Geography Y Y Y 
Census divisions Y Y Y 
Socioeconomic characteristics Y Y 
Past populations Y 

Overidentification p-value 0.60 0.11 0.26 0.24 0.29 
First-stage statistic 42.8 16.5 11.8 11.5 8.84 

Panel B (LIML). Dependent variable: In VKT for interstate highways, entire MSAs 
Instruments: In 1835 exploration routes, In 1898 railroads, and In 1947 planned interstates 

In (IH lane km) 

Overidentification p-value 

1.32*** 

(0.04) 
0.60 

0.94*** 

(0.11) 
0.11 

1.05*** 

(0.12) 
0.26 

Panel C (TSLS). Dependent variable: In VKT for interstate highways, entire MSAs 
Instruments: In 1947planned interstates 

In (IH lane km) 1.33*** 1.00*** 1.10*** 

(0.05) (0.11) (0.13) 
First-stage statistic 99.7 41.5 29.8 

Panel D (TSLS). Dependent variable: In VKT for interstate highways, entire MSAs 
Instruments: In 1898 railroads 

In (IH lane km) 

First-stage statistic 

1.31*** 

(0.06) 
23.7 

0.83*** 

(0.15) 
25.8 

1.03*** 

(0.18) 
19.0 

Panel E (TSLS). Dependent variable: In VKT for interstate highways, entire MSAs 
Instruments: In 1835 exploration routes 

In (IH lane km) 1.25 *** 0.63 *** 

(0.08) (0.17) 
First-stage statistic 53.6 13.8 

0.75*** 

(0.18) 
9.91 

Panel F (LIML). Dependent variable: In VKT for interstate highways, entire MSAs 
Instruments: In 1898 railroads, and In 1947 planned interstates 

In (IH lane km) 

Overidentification p-value 
First-stage statistic 

1.39*** 

(0.04) 
0.69 

37.9 

1.09*** 

(0.10) 
0.10 

17.7 

1.18*** 

(0.11) 
0.31 

12.1 

Panel G (LIML). Dependent variable: In VKT for interstate highways, entire MSAs 
Instruments: In 1898 railroads, and In 1947planned interstates 

In (IH lane km) 1.33*** 0.98*** 

(0.05) (0.13) 
0.91 0.53 

53.1 22.7 
Overidentification p-value 
First-stage statistic 

1.13*** 

(0.16) 
0.97 

14.4 

Panel H (LIML). Dependent variable: In VKT for interstate highways, entire MSAs 
Instruments: In 1898 railroads, and In 1947 planned interstates 

In (IH lane km) 

Overidentification p-value 
First-stage statistic 

1.26*** 

(0.05) 
0.77 

52.2 

082*** 

(0.11) 
0.55 

21.0 

0.93*** 

(0.13) 
0.96 

14.2 

1.02*** 

(0.13) 
0.25 

1.08*** 

(0.13) 
29.5 

1 00*** 

(0.18) 
21.1 

0.68*** 

(0.21) 
7.15 

1 15*** 

(o!13) 
0.25 

14.4 

1.08*** 

(0.15) 
0.88 

15.8 

0.92*** 

(oil 3) 
0.98 

14.4 

1.06*** 

(0.15) 
0.30 

1.12*** 

(0.15) 
26.7 

1 02*** 

(0.22) 
11.9 

q 72*** 

(0.22) 
6.32 

120*** 

(0.16) 
0.29 
9.51 

1.13*** 

(0.17) 
0.81 

11.7 

0.97*** 

(0.16) 
0.93 
9.76 

Notes: All regressions include a constant (and year effects for panels A-E). Robust standard errors in parenthe 
ses (clustered by MSA in panels A-E); 684 observations corresponding to 228 MSAs for each regression for pan 
els A-E and 228 observations for panels F-H. 

■""Significant at the 1 percent level. 
** Significant at the 5 percent level. 

*Significant at the 10 percent level. 
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In panels A-E of Table 6 we pool our three cross sections. This may conceal cross 

decade variation in our parameters. To address this issue, in panels F-H we report 
IV estimates of p$ using each of our cross sections separately. We see that the road 

way elasticity of VKT decreases from slightly above one in 1983 to slightly below 

one in 2003. This decline is not statistically significant, however, when including 

geographic and other controls. This (admittedly weak) trend downward suggests the 

conjecture that more roadway can lead to a more than proportional increase in traffic 

when roads are not congested. Alternatively, it may be that the most useful highway 

segments are developed earlier and receive more traffic. This second conjecture is 

consistent with John G. Fernald's (1999) conclusion that the productivity effects of 

the US interstate system show a marked decline over time. We hope future research 

will more completely investigate these issues. 

In Table 6, our preferred estimate for the elasticity of interstate highway VKT 

with respect to lane kilometers is from panel A and column 3 at 1.03. This estimate 

also constitutes our preferred estimate overall since it is obtained using our preferred 
estimation method, which controls for the endogeneity of roads, and our preferred 

specification, which includes geographical controls but not the socioeconomic char 

acteristics of MSAs. 

III. Implications of the Fundamental Law of Road Congestion 

We now note two logical implications of the fundamental law of road congestion. 
By confirming that these implications are consistent with observation, we provide 
further indirect evidence of the law.12 

A. Traffic and Transit 

The fundamental law of road congestion requires that new road capacity be met 
with a proportional increase in driving. A corollary is that if we were to somehow 
remove a subset of a city's drivers from a city's roads, then others would take their 

place. We can think of public transit in this way. Public transit serves to free up road 

capacity by taking drivers off the roads and putting them in buses or trains. Thus, 
the fundamental law implies that the provision of public transit should not affect the 
overall level of VKT in a city. We now investigate this proposition. 

To measure an MSA's stock of public transit, we use MSA-level data on public 
transit. These data are based on the Section 15 annual reports, and measure public 
transportation as the daily average peak service of large buses in 1984, 1994, and 
2004. We note that these data do not allow us to investigate other forms of public 
transportation, such as light rail, independently of buses.13 

12In the working paper version of this article (Duranton and Turner 2009), we also show that if the long-run 
variable cost of producing VKT is approximately constant returns to scale, the fundamental law of road congestion 
then implies that the demand for travel should be flat. We provide evidence to this effect and use this result in a 
welfare calculation. 

13 There are too few MS As with light rail to permit informative cross-sectional analysis. Our data indicate that 
there were only 11 MSAs with any light rail at all in 1984, and of these only 6 had more than 100 rail cars. The 
situation is only marginally better in 1994 when 21 MSAs had light rail or commuter rail service and 7 had more 
than 100 cars. We have experimented with an index that sums large buses and rail cars. 
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Since we expect that the stock of public transit in an MSA may depend in part 
on how congested is the road network, we are concerned that our measure of public 
transit will be endogenous in a regression to explain MSA interstate VKT. To deal 

with this issue, we again resort to instrumental variables estimation. In addition 

to the 1947 highway plan and 1898 railroad kilometers, we use the MSA share of 

democratic vote in the 1972 presidential election as an instrument in this estimation. 

The 1972 US presidential election between Richard Nixon and George McGovern 

was fought on the Vietnam War and McGovern's very progressive social agenda. It 

ended with Nixon's landslide victory. Places where McGovern did well are also argu 

ably places that elected local officials with a strong social agenda. Importantly, this 

election also took place shortly after the 1970 Urban Mass Transportation Act and it 

only briefly predates the first oil shock and the 1974 National Mass Transportation 
Act that followed. While total federal support for public transportation was less than 

$5 billion (in 2003 dollars) for the entire decade starting in 1960, the 1970 act appro 

priated nearly $15 billion and the 1974 act appropriated $44 billion. Similar levels of 

funding persist to the time of this writing (for a history of US public transportation, see 

Edward Weiner 1997; Daniel Baldwin Hess and Peter A. Lombardi 2005). More gen 

erally, during the 1970s public transit expanded and evolved from a private fare-based 

industry to a quasi-public sector activity sustained by significant subsidies. 

In order for a 1972 election to predict 1984 levels of public transit infrastructure, 

public transit funding must be persistent. In fact, the "stickiness" of public transit 

provision is widely observed (Jose A. Gomez-Ibanez 1996) and is confirmed in our 

data. The Spearman rank correlation of bus counts between 1984 and 2004 is 0.90. 

Our data also suggest that MSAs that voted heavily for McGovern in 1972 made a 

greater effort to develop public transit in the 1970s, and these high levels of public 
transit persisted throughout our study period. Furthermore, the raw data confirm the 

relevance of our instrument. The pairwise correlation between log 1984 buses and 

1972 democratic vote is 0.34. This partial correlation is robust to adding controls for 

geography and past population. In a nutshell, the 1972 share of democratic vote is 

a good predictor of the 1984 MSA provision of buses, which then grew proportion 

ately to population. 
The argument for the exogeneity of the 1972 democratic vote is less strong than 

that for the road instruments.'4 Nonetheless, a good argument can be made that fund 

ing for public transportation in American cities in the early 1970s was a response 
to contemporaneous social needs. More specifically, the provision of buses at this 

time did not seek to accommodate traffic congestion during the 1983-2003 period. 
Two facts strengthen the case for our empirical strategy. First, as we show below, 

the results for public transportation are robust and stable as we change specifica 

tions. Second, when it is possible to conduct overidentification tests, our results 

always pass these tests. 

14In particular, it is possible that a high-share democratic vote in 1972 was associated with a variety of other 

policies and local characteristics that affected subsequent VKT. Since we control for 1980 population (and thus 

implicitly for growth between 1970 and 1980), we would need these policies to have long-lasting effects and not be 

reflected in population growth. In this respect, Edward L. Glaeser, Jose A Scheinkman, and Adrei Shleifer (1995) 
find very weak or no association between a number of urban policies (though not public transport) and urban growth 
between 1960 and 1990. In addition, recent work by Fernando Ferreira and Joseph Gyourko (2009) found no evi 

dence of any partisan effect with respect to the allocation of municipal expenditure. 
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Table 7—VKT as a Function of Lane Kilometers and Buses, Pooled Regressions 

OLS OLS OLS OLS OLS OLS LIML LIML LIML LIML 

(1) (2) (3) (4) (5) (6) (?) (8) (9) (10) 

Dependent variable. 

In(IH lane km) 

ln(bus) 

ln(population) 

Geography 
Census divisions 
Socioeconomic 

characteristics 
Past populations 
MSA fixed effects 

R2 
Overidentification 

p-value 
First-stage statistic 

In VKTfor interstate highways, entire MSAs 

1.07*** 0.82*** 0.86*** 0.86*** 1.06*** 1.06*** 1.38*** 0.96*** 1.09*** 1.18*= 

(0.04) (0.05) (0.05) (0.04) (0.05) (0.05) (0.08) (0.10) (0.13) (0.17) 
0.14***—0.023 0.026 0.039** 0.021** 0.012* -0.035 -0.081* 0.12 0.21 

(0.02) (0.017) (0.019) (0.018) (0.009) (0.008) (0.049) (0.046) (0.10) (0.14) 
0.51*** 0.40*** 0.26** 

(0.05) (0.05) (0.12) 
Y Y 
Y Y 

Y 

0.32*** 

(0.10) 
0.50*** 0.079 -0.15 

(0.12) (0.207) 
Y 
Y 

0.90 0.94 0.95 

Y 

0.96 

Y 

0.94 

Y 

0.94 
0.90 0.46 

23.3 21.1 

0.47 

9.53 

(0.27) 
Y 
Y 
Y 

0.38 

5.68 

Notes: All regressions include a constant and year effects. Robust standard errors clustered by MSA in parentheses; 
684 observations corresponding to 228 MSAs for each regression. Instruments for buses and lane kilometers are In 
1898 railroads, In 1947 planned interstates, and 1972 presidential election share of democratic vote. 

*** 
Significant at the 1 percent level. 

**Significant at the 5 percent level. 

""Significant at the 10 percent level. 

Regressions in Table 7 are similar to regressions in Tables 4 and 6, except that 

we also include the log count of large buses in an MSA as an explanatory variable. 

In columns 1 through 6 we present OLS regressions, while in columns 7 through 
10 we report LIML regressions (rather than TSLS since our set of instruments is 
sometimes marginally weak). Our dependent variable is log VKT for all interstates. 
As in results reported earlier, the lane kilometer elasticity of VKT is close to one in 
all specifications. The second row gives our estimates of the bus elasticity of VKT. 
These estimates are consistently small, are in general precisely estimated, do not 
have a consistent sign, and are often statistically indistinguishable from zero. 

To check the robustness of our results, Appendix Table 5 (in the online Appendix) 
repeats some of the regressions of Table 7 for each of our three cross sections. The 

resulting estimates of the bus elasticity of VKT are qualitatively unchanged. As a 
further check, Appendix Table 6 repeats the regressions of Table 7 using a broader 
measure of transit adding all train cars to our count of buses. The resulting elasticity 
estimates of this table are virtually identical to those of Table 7. 

Consistent with the fundamental law, these results fail to support the hypothesis 
that increased provision of public transit affects VKT. This finding also should be of 

independent interest to policymakers. 

B. Convergence of AADT Levels 

The fundamental law of road congestion requires that each MSA have an intrin 
sic natural level of traffic conditional on lane kilometers of roadway. An implica 
tion of this is that a deviation from this natural level ought to be followed by a 
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Table 8—Convergence in Daily Traffic 

OLS OLS OLS OLS OLS, FE TSLS 

(1) (2) (3) (4) (5) (6) 
Dependent variable: Change in In daily traffic (AADT) for interstate highways, entire MSAs 

Initial In IH AADT level —0.11 *** -0.12*** —0.17*** —0.22*** —0.98*** —0.17*** 

(0.02) (0.02) (0.02) (0.03) (0.05) (0.02) 
Aln(population) 0.38*** 0.48*** 0.29** 0.69** 

(0.10) (0.11) (0.14) (0.31) 
Geography Y Y Y 
Census divisions Y Y Y 
Initial share manufacturing Y Y 
Past populations Y 
Socioeconomic characteristics Y 

R2 0.26 0.32 0.39 0.44 0.82 — 

First-stage statistic 47.6 

Notes: All regressions include decade effects. Robust standard errors in parentheses (clustered by MSA); 456 obser 
vations corresponding to 228 MSAs for each regression. Instruments for Aln(population) is expected population 
growth based on initial composition of economic activity, interacted with the national growth of sectors. 

***Significant at the 1 percent level. 

**Significant at the 5 percent level. 

*Signilicant at the 10 percent level. 

return to it. Traffic flows should exhibit convergence to this natural level. In this 

subsection we thus examine the evolution of AADT rather than vehicle kilometers 

traveled VKT. 

The raw data suggest that such convergence may occur. From 1980 to 2000 

the cross-MSA standard deviation of all interstate AADT decreases from 1.40 

to 1.28. To investigate the possibility of convergence more carefully, Table 8 

presents the results of "AADT growth regressions" in which we pool first differ 

ences in interstate AADT for 1990 and 2000 and regress them on initial interstate 

AADT levels. 

In the first four columns of Table 8 we see that for interstate AADT the relation 

ship between initial levels and changes is negative in the cross section, even as we 

add an exhaustive set of controls. In column 5 we see that mean reversion persists if 

we include MSA fixed effects and consider only time-series variation.15 In column 6 

we account for the possibility of an endogenous relationship between changes in 

AADT and changes in population by instrumenting for the latter using our popula 
tion change instrument described above. This IV estimate shows mean reversion 

similar to what we see in the OLS regressions. 
In Appendix Table 7 (in the online Appendix), we replicate these regressions for 

corresponding measures of AADT for interstate highways in urbanized areas, non 

urban interstates, and major urban roads, and find evidence of convergence for these 

roads as well. 

15 The much higher coefficient obtained in this regression is reminiscent of results in GDP growth regressions 
and might be explained by the greater importance of measurement error for differences than for levels. Our results 

in the other columns do not, however, appear to be driven by measurement error. Traffic convergence during the 

1990s is the same in OLS or TSLS when instrumenting initial AADT with its ten-year lagged value. 
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Table 9—Truck VKT as a Function of Lane Kilometers, Pooled Regressions 

OLS OLS OLS OLS OLS OLS OLS OLS TSLS TSLS 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Dependent variable: In Truck VKTfor interstate highways, entire MSAs 

ln(IH lane km) 1.30*** 1.16*** 1.20*** : 1.25*** 1.19*** 1 46*** 1.48*** 1.52*** 2.09*** 2 32*** 

(0.07) (0.13) (0.13) (0.13) (0.14) (0.26) (0.27) (0.27) (0.44) (0.43) 

ln(population) 0.16* 

(0.08) 
0.13 

(0.11) 
0.23** 

(0.10) 
1.79** 

(0.79) 
2.14** 

(0.94) 
2.02** 

(0.91) 
-0.48 

(0.31) 
-0.77** 

(0.34) 
Geography 
Census divisions 

Y 
Y 

Y 
Y 

Y 
Y 

Y 
Y 

Socioeconomic Y Y Y 

characteristics 
Past populations 
MSA fixed effects 

Y 
Y Y Y 

R2 0.53 0.54 0.58 0.59 0.61 0.31 0.34 0.34 — — 

Overidentification p-value 
First-stage statistic 

0.27 
16.5 

0.18 
11.8 

Notes: All regressions include a constant and year effects. Robust standard errors clustered by MSA in parentheses. 
Instruments are In 1835 exploration routes, In 1898 railroads, and In 1947 planned interstates; 684 observations cor 

responding to 228 MSAs for each regression. 
***Significant at the 1 percent level. 

**Significant at the 5 percent level. 
* Significant at the 10 percent level. 

IV. Where Does All the VKT Come From? 

Our data show that building roads elicits a large increase in VKT on those roads. 

We now turn our attention to understanding where all the extra VKT comes from. 

In particular, we consider four possible sources of demand for VKT: changes in 

individual behavior; the migration of people and economic activity; increases in 

commercial transportation; and diversion of traffic from other roads. 

A. Commercial VKT 

To investigate the relationship between changes in the road network and changes 
in truck VKT, we first use the HPMS sample data's report of the daily share of single 
unit and combination trucks using each road segment on an average day. With our 

other data, this allows us to calculate truck VKT for all roads in our sample. With 

these measures of truck VKT in hand, we replicate our earlier analysis of all VKT 

for truck VKT. 

Table 9 reports these results. Our dependent variable is all interstate highway 
truck VKT, and the explanatory variable of interest is lane kilometers of interstate 

highways. In columns 1 through 5, we report OLS estimates. In columns 6, 7, and 8 
we include MSA fixed effects and identify the effect of interstate highways on truck 
VKT using only time-series variation. In columns 9 and 10 we report TSLS where 

we use our three historical variables to instrument for contemporaneous lane kilo 
meters. In every case, our estimate of the highway elasticity of truck VKT is above 
one and is estimated precisely. While the OLS and fixed-effect estimates are gener 
ally within two standard deviations of one, the IV estimates in columns 9 and 10 are 
above two and are more than two standard deviations above one. 
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In all, we find that a 10 percent increase in interstate highways causes about a 

10-20 percent increase in truck VKT, so that commercial traffic is at least as respon 
sive to road supply as other traffic. 

We confirm these results for all interstate highways in Appendix Table 8 which 

runs separate regressions for each decade. We also replicate these regressions for 

urbanized roads. Interestingly, truck VKT in cities responds less to changes in major 
roads than does interstate truck traffic to changes in interstates. 

In the online Appendix, we also examine the relationship between roads and 

employment in traffic-intensive activities. We use County Business Patterns data for 

1983, 1993, and 2003. These data provide county-level information on employment 
in "motor freight transportation and warehousing" (SIC 42). Appendix Tables 9 and 

10 present results of regressions predicting log MSA employment in trucking and 

warehousing. These regressions show that employment in this sector increases with 

interstate lane kilometers, that it is more responsive to the supply of nonurbanized 

area interstate than to the supply of urbanized area interstate, and that it has become 

more sensitive to changes in the supply of interstate highways over the course of our 

study period. 
An interesting explanation for our findings is that improvements to highways 

cause large increases in the use of these routes by long-haul truckers, while improve 
ments to the local road network cause smaller increases in local commercial traffic. 

B. Individual Driving Behavior and Highways 

We now investigate the extent to which individual or household driving behavior 

changes in response to changes in the extent of an MSA's interstate network. To 

accomplish this, we look at the relationship between lane kilometers of interstate 

highway and three different measures of individual and household driving taken 

from the 1995 and 2001 NPTS. 

The NPTS actually consists of four parts. The "household survey" provides cat 

egorical variables describing the age, race, education, and income of the household 

head or the principal respondent.16 Confidential geocode information allows us to 

assign all households to MSAs.17 The "vehicle survey" provides a detailed descrip 
tion of each household motor vehicle including the survey respondents' report of 

how many kilometers it was driven in the past 12 months. We use the vehicle survey 
to construct an estimate of total VKT for the household during the survey year. 
The "person survey" describes travel behavior for household members over the past 

week, commuting behavior in particular. We use the person survey to measure com 

muting behavior for the average commuter in a respondent household. Finally, the 

16It is worth noting that the NPTS survey protocol requires a phone call, a house visit, and that respondents keep 
a travel diary. Thus, it should be regarded as accurate relative to other sources of self-reported travel data. The 2000 

US census provides an alternative source of information regarding commute times. This information is reported for 

a sample of the population using 12 time-bands. A comparison between 2000 census and 2001 NPTS data of mean 

commute times across 227 MSAs yields a raw correlation of 0.63. This correlation is 0.85 when considering only 

MSAs with population above 1 million. Means computed from the NPTS appear more noisy. Regressing log census 

mean commute times for all commuters (including those using public transportation) against mean NPTS car com 

mute times yields a coefficient of 1.05 in a regression without constant. 

l7The public use data reveal only respondents' MSAs for respondents residing in large MSAs. We do not use 

earlier waves of the NPTS because they cannot be geocoded. 
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"trip survey" describes all household travel on a given randomly selected day. We 

use this survey to measure all household daily VKT. 

While we provide more detailed discussion of the NPTS and some descriptive 
statistics in the Data Appendix, it is useful to discuss the relationship between the 

NPTS and HPMS based measures of VKT. The NPTS reports a per household mea 

sure of VKT on all roads, while the HPMS reports aggregate VKT on interstates and 

major urban roads within MSAs. Thus, the HPMS looks at all traffic on a subset of 

roads, while the NPTS looks at all household driving on any roads, but ignores com 

mercial or through traffic and changes in population. 
To investigate the extent to which individual or household driving behavior 

changes in response to changes in the extent of an MSA's interstate network, we 

look at the relationship between lane kilometers of interstate highway and our three 

NPTS-derived measures of individual and household driving. 
We perform two series of estimations using our two pooled cross sections of the 

NPTS. The first uses our city level cross-section estimating equation (2), adjusted 
to reflect the fact that our unit of observation is now a person or household in a par 
ticular city and year. In particular, we estimate 

(6) ln(Gf) = A0 + p$H In (Rjf) + AjX# + e,, 

where QfR denotes VKT on all roads for household (or individual) j, and i indexes 

MSAs. Because of the log specification, the coefficient on lane kilometers is the elas 

ticity of household VKT on all roads with respect to interstate highway lane kilome 

ters. We include as control variables both MSA-level characteristics and individual 

demographic characteristics, and allow for clustering of errors at the MSA level. 

Our second set of estimations is the individual- or household-level analog of 
our instrumental variables estimating equation (5). Here, except for the presence 
of controls for individual characteristics, our first-stage equation predicts interstate 
kilometers and is identical to the first-stage in equation (5); the second stage cor 

responds to equation (6). 
Table 10 reports the results of regressions to explain three measures of individ 

ual driving using pooled cross sections from the 1995 and 2001 NPTS. Panel A of 
the table presents OLS estimates and panel B presents TSLS estimates. In the first 

three columns our dependent variable is commute kilometers on a typical day for 
all NPTS individuals who commute. In columns 4 through 6 our dependent vari 
able is total household vehicle kilometers on a particular travel day. In columns 
7 through 9, our dependent variable is total VKT by all household vehicles in the 

survey year. 
With the exception of the regressions in columns 4 and 7, which do not control for 

population, our estimates suggest a positive and statistically significant relationship 
between the extent of the highway network and individual travel. Our preferred esti 
mates are the TSLS estimates in panel B. These estimates suggest that a 10 percent 
increase in the extent of the interstate network causes about a 1 percent increase in 
individual driving on all roads. While the NPTS data do not reveal which classes of 
roads accommodate this increase in driving, below we use the HPMS to explore the 
diversion of traffic between classes of roads. 
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Table 10—individual Travel as a Function of Interstate Lane Kilometers 

In commute distance In household daily VKT In household annual VKT 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
Panel A. OLS on interstate highways, entire MSAs 

In (IH lane km) 0.094*** 0.074*** 0.074*** -0.028 0.087*** 0.082*** -0.047*** 0.055*** 0.054*' 

(0.013) (0.022) (0.021) (0.020) (0.022) (0.020) (0.016) (0.016) (0.015) 
In (population) 0.022 0.25 -0.091*** 0.12 -0.075*** -0.046 

(0.021) (0.17) (0.019) (0.20) (0.014) (0.116) 
Geography Y Y Y Y Y Y 
Census divisions Y Y Y Y Y Y 
Past populations Y Y Y 

Observations 51,447 51,447 51,447 65,318 65,318 65,318 60,320 60,320 60,320 
R2 0.06 0.06 0.06 0.10 0.10 0.10 0.18 0.19 0.19 

Panel B. TSLS on interstate highways, entire MSAs 
Instruments: In 1898 railroads and In 1947planned interstates 

In (IH lane km) 0.097*** 0.10** 0.10*** -0.017 0.11** 0.089* -0.040** 0.056** 0.049* 

(0.014) (0.04) (0.04) (0.021) (0.05) (0.053) (0.016) (0.027) (0.028) 
In (population) -0.00072 0.22 -0.11** 0.11 -0.076*** -0.040 

(0.0331) (0.17) (0.04) (0.21) (0.022) (0.119) 
Observations 51,447 51,447 51,447 65,318 65,318 65,318 60,320 60,320 60,320 
Overidentification 0.063 0.36 0.52 0.28 0.14 0.45 0.12 0.63 0.94 

p-value 
First-stage 51.7 18.6 16.8 50.1 17.5 15.5 49.1 16.9 14.6 

Statistic 

Notes: All regressions include a constant and control for individual characteristics (income, education, gender, age, 
and race). Robust standard errors in parentheses (clustered by MSA); 228 MSAs represented in all regressions. 

♦"Significant at the 1 percent level. 

"Significant at the 5 percent level. 
* 
Significant at the 10 percent level. 

C. Population Growth 

By reducing the cost of transportation within a city, all else equal, improvements 
to a city's road network make a city more attractive relative to other cities. Given 
the high mobility of the US population, this suggests that changes to a city's road 
network should be met with changes to a city's population. In fact, this conjecture 
appears to be true, and the extant literature estimates the size of this effect. 

Michaels (2008) and Amitabh Chandra and Eric Thompson (2000) provide sug 
gestive evidence. Both papers consider the effect of improvements in access to the 
interstate system on rural counties in the US. Michaels (2008) finds that an interstate 

highway in a rural county leads to large increases in retail earnings. Chandra and 

Thompson (2000) find that improved access to the interstate system causes an over 

all increase in firm earnings. Together, these results show that interstate highways 
cause increases in the level of local economic activity. To the extent that population 
levels and overall economic activity are linked, this suggests that improvements to 

the interstate network lead to population increases. 

Duranton and Turner (2008) provide more direct evidence. They consider US 

MSAs between 1980 and 2000 and investigate the way that population growth 

responds to changes in the road network. Like the current paper, they rely on an 

early plan of the interstate highway network and 1898 railroad routes as instruments 
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for the modern road network. They find that a 10 percent increase in the extent of the 

road network causes a 1.3 percent increase in MSA population over 10 years, and a 

2 percent increase over 20 years. 

D. Diversion from Other Roads 

We measure traffic and lane kilometers for three exclusive classes of roads in each 

MSA: urbanized area interstates, nonurbanized area interstates, and major urbanized 

area roads. These data allow direct tests of whether changes to one class of roads 

affects VKT on the others. In particular, we estimate each of the three following 
variants of equation (2): 

(7) In (Cf°) = A, + + P»e™ln (R'D 

+ P/j«wln {RftRlJ) + AiXit + eit, 

(8) In {Q\D = B0 + p$Tln(*r) + *gSln(*P"0 

+ Prmk" \n(RuRU) + B\X,t + 7it. 

(9) ln(erO = Q + *gTln(*r) + f&WXF0) 

+ In (R^ru) + CxXit + uit. 

In equation (7), p%Zu is the urbanized area interstate VKT elasticity of nonurbanized 
area interstate lane kilometers. If, for example, this parameter is — 0.1, then a 10 percent 
increase in nonurbanized-area interstate lane kilometers results in a 1 percent decrease 
in urbanized-area interstate VKT. Interpretation of other coefficients is similar. 

Table 11 reports estimates of equations (7)-(9). In all regressions we pool our three 
cross sections of HPMS data and use OLS. Panel A presents estimates of equation (7). 
In these regressions our dependent variable is urbanized area interstate VKT and the 

dependent variables of interest are the three measures of lane kilometers. We exploit 
cross-sectional variation and, from left to right, use progressively more exhaustive 
lists of controls. Panels B and C are similar to panel A, but use nonurbanized interstate 
VKT and major urbanized area road VKT as dependent variables. 

Consistent with our earlier results, we see that VKT elasticity of own lane kilometers 
is close to one for all specifications in panel A and above 0.8 for all specifications in 

panels B and C. The largest estimated cross elasticity is 0.22 for the nonurbanized-area 
interstate VKT elasticity of urbanized-area major road lane kilometers, in column 1, 
row 3, of panel B. This estimate is not robust to the addition of controls, and is negative 
or indistinguishable from zero in other specifications. The estimate of the urbanized 
area interstate VKT elasticity of urbanized-area major road lane kilometers in column 

1, row 3, of panel A is similar. Other cross elasticities are generally quite small. Our 

preferred regressions are reported in column 5. In this specification, all cross elasticities 
are negative, with magnitudes no larger than 0.1. In sum, Table 11 suggests that, while 
traffic diversion does occur in response to changes in the road network, the fundamen 
tal law of road congestion mainly reflects traffic creation rather than traffic diversion. 
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Table 11—VKT as a Function of Lane Kilometers 
for Different Types of Roads, Pooled OLS 

(1) (2) (3) (4) (5) 
Panel A. Dependent variable: In VKT for interstate highways, urbanized areas within MSAs 

In (IHU lane km) 1.09*** 1.01 *** j 04*** 1.03*** 1 04*** 

(0.03) (0.03) (0.03) (0.03) (0.03) 
In (IHNU lane km) -0.026 -0.083*** -0.086*** -0.087*** -0.099*** 

(0.031) (0.025) (0.024) (0.024) (0.023) 
In (MRU lane km) 0.22*** -0.13** -0.12** -0.12** -0.100** 

(0.04) (0.06) (0.06) (0.05) (0.05) 
In (population) Y Y Y Y 

Geography Y Y Y 
Census divisions Y Y Y 
Socioeconomic characteristics Y Y 
Past populations Y 

R2 0.96 0.97 0.97 0.98 0.98 

Panel B. Dependent variable: In VKT for interstate highways, outside urbanized areas within MSAs 

In (IHU lane km) 0.032 -0.049 -0.030 -0.030 -0.013 

(0.037) (0.034) (0.031) (0.030) (0.032) 
In (IHNU lane km) 0.87*** 0.81*** 0.84*** 0.85*** 0.83*** 

(0.04) (0.03) (0.03) (0.02) (0.02) 
In (MRU lane km) q_22*** -0.14** -0.053 -0.046 -0.013 

(0.05) (0.05) (0.052) (0.050) (0.050) 
R2 0.85 0.88 0.92 0.92 0.93 

Panel C. Dependent variable: In VKT for major roads, urbanized areas within MSAs 

In (IHU lane km) 0.015 -0.049*** -0.049*** -0.057*** -0.048*** 

(0.021) (0.018) (0.016) (0.014) (0.015) 
In (IHNU lane km) 0.042** -0.0038 0.00063 -0.0044 -0.0042 

(0.021) (0.0181) (0.0150) (0.0133) (0.0133) 
In (MRU lane km) 1.09*** 0.81*** 0.82*** 0.81*** 0 82*** 

(0.03) (0.03) (0.03) (0.03) (0.03) 
R2 0.97 0.98 0.99 0.99 0.99 

Notes: All regressions include a constant and year effects. Robust standard errors clustered by 
MSA in parentheses; 572 observations corresponding to 192 MS As for each regression. 

*** Significant at the 1 percent level. 
** Significant at the 5 percent level. 

*Significant at the 10 percent level. 

In the online Appendix, we confirm these results in Appendix Tables 11 and 12, 

where we replicate the results of Table 11 in decade-by-decade OLS regressions and 

in first-difference regressions. 

E. An Accounting Exercise 

The fundamental law of road congestion requires that changes in the extent of the 

road network are met with proportional changes in traffic. We have suggested four 

possible sources for this increase in traffic: changes in trucking and commercial 

driving; changes in individual or household driving behavior; changes in population; 
and diversion of traffic. We now consider whether these four sources are sufficient to 

explain the fundamental law and assess their relative importance. 
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To begin, consider a 10 percent increase in the interstate network of an average MSA 

around 2000. Using our preferred estimate from column 3 of Table 6, this increase 

causes a 10.3 percent increase in VKT on the interstates of our hypothetical city. 
In Table 1 we see that in 2003, trucks accounted for 13 percent of VKT on inter 

state highways in an average MSA. In Table 9, our preferred specification is column 

10, where the truck VKT elasticity of interstate highways is about 2.3. This means 

that a 10 percent increase in the stock of roads causes about a 23 percent increase 

in truck VKT and a 3.0 percent increase in overall interstate VKT, about 29 percent 
of the total increase in VKT caused by our 10 percent increase in roads. While our 

preferred elasticity of 2.3 may seem high, the average of all estimates in panel A of 

Table 9 is 1.5. This lower value would imply that trucks represent 18 percent of the 

total increase in VKT. Therefore, we estimate that trucks account for between 19 

and 29 percent of the total increase in interstate VKT that results from our hypotheti 
cal 10 percent increase in interstate lane kilometers. 

For migration, taking the preferred estimate from Duranton and Turner (2008), our 

10 percent increase in the interstate network causes about a 2.1 percent increase in 

population. From column 3 of Table 6, the MSA population elasticity of interstate 

VKT is 0.30. Together, these two elasticities suggest that a 10 percent increase in 

population results in about a 0.6 percent increase interstate VKT, about 6 percent of 

the total increase. This elasticity of 0.30 is estimated in a regression that also controls 

for decennial population levels between 1920 and 1970. Because decennial popula 
tion levels are highly correlated, this may understate the effect of population on VKT. 

Panel B of Table 5, which controls for the endogeneity of population in first-dif 

ference estimates, reports higher estimates. The estimate in column 5 is 1.02. This 

alternative value implies that population growth represents 21 percent the total effect 

of an extension in interstate lane kilometers. Therefore, we estimate that migration 
accounts for between 5 and 21 percent of the total increase in interstate VKT that 

results from our hypothetical 10 percent increase in interstate lane kilometers. 

Turning to substitution across roads, we suppose that the 10 percent increase in 
our MSA's interstate lane kilometers network is accomplished by increasing both 
urbanized and nonurbanized interstates by 10 percent. Since we are considering 
increases to both classes of interstate highways, we need only be concerned with 
diversion of traffic from major urbanized-area roads. This is estimated in panel 
C of Table 11. In rows 1 and 2 of column 5, we see that a 10 percent increase 
in urbanized and nonurbanized interstate causes a decrease in major urban road 
VKT of 0.48 percent and 0.04 percent, respectively (and basing our calculation 
on column 3 or 4 would yield similar results). That is, our 10 percent increase in 
interstate lane kilometers diverts 0.52 percent of traffic from major urban roads. 

Using the levels of VKT for major urban and all interstates given in Table 1 allows 
us to calculate that this diversion amounts to about a 1 percent increase in inter 
state VKT, or about 10 percent of the total effect of our hypothetical 10 percent 
extension. Because many estimates in Table 11 (or in Appendix Tables 11 and 12) 
indicate no substitution from major urban roads toward interstates, we cannot rule 
out the absence of a substitution effect. Therefore, we estimate that the diversion 
of traffic from other classes of roads accounts for between 0 and 10 percent of 
the total increase in interstate VKT that results from our hypothetical 10 percent 
increase in interstate lane kilometers. 
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Calculating the contribution of changes to household behavior is more difficult. 

Table 10 estimates the effect of interstate lane kilometers on individual driving 
behavior. We take the estimate of 0.11 given by column 5 of panel B (which is very 
close to the corresponding estimate for alternative measures of VKT in columns 2, 

3, and 6 of both panels). A 10 percent increase in interstate lane kilometers causes a 

1.1 percent increase in household annual VKT. Unfortunately, our data do not allow 

us to apportion household driving to different road networks. A first possibility is 

to assume that this 1.1 percent increase in driving is proportional to current driving 
across all road networks. Since households represent 87 percent of interstate VKT, 
this 1.1 percent increase represents an increase in interstate VKT of 0.9 percent, or 

9 percent of the total increase in interstate VKT caused by a 10 percent increase in 

lane kilometers. This is arguably an unrealistic lower bound. Alternately, suppose 
that the 1.1 percent increase in household driving takes place only on interstates 

(recall that we earlier reported that about 24 percent of VKT takes place on inter 

states). In this case, the increase in interstate VKT would account for 4.1 percent of 

the total change in VKT, or 39 percent of the effect of our expansion in lane miles. 

This constitutes an upper bound. Therefore, we estimate that increases in household 

driving account for between 9 and 39 percent of the total increase in interstate VKT 

that results from our hypothetical 10 percent increase in interstate lane kilometers. 

To sum up, of four possible sources for the new traffic following an increase in 

lane kilometers of interstates, changes to individual behavior and changes in com 

mercial driving are the most important. Migration and traffic diversion are signifi 

cantly less important. We also note that if we take the upper bounds for the shares of 

all four sources, we account for just about the entire increase in VKT. 

V. Conclusion 

This paper analyzes new data describing city-level traffic in the continental US 

between 1983 and 2003. Our estimates of the elasticity of MSA interstate high 

way VKT with respect to lane kilometers are 0.86 in OLS, 1.00 in first difference, 
and 1.03 with IV. Because our instruments provide a plausible source of exogenous 

variation, we regard 1.03 as the most defensible estimate. We take this as a confirma 

tion of the "fundamental law of highway congestion" suggested by Downs (1962), 
where the extension of interstate highways is met with a proportional increase in 

traffic for US MSAs. 

We also provide suggestive evidence that this law extends beyond urban high 

ways, a "fundamental law of road congestion." For a broad class of major roads 

within the "urbanized" part of MSAs, we estimate a roadway elasticity of VKT 

between 0.67 and 0.89, depending on the decade in OLS. Changes in the boundaries 

of urban areas over time and the weakness of our instruments for this class of roads 

preclude reliable first-difference and IV estimates. 

Beyond direct evidence, we confirm two implications of the fundamental law of 

road congestion: we find no evidence that public transit affects VKT, and there is 

convergence of traffic levels. Our results also suggest that roads are assigned to 

MSAs with little or no regard for the prevailing level of traffic. 

We also consider the sources of new traffic elicited by extensions to the inter 

state network. We find that changes to individual driving behavior and increases in 
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trucking are most important. Migration is somewhat less important. Surprisingly, 
diversion of traffic from other road networks does not appear to play a large role. 

These findings suggest that both road capacity expansions and extensions to pub 
lic transit are not appropriate policies with which to combat traffic congestion. This 

leaves congestion pricing as the main candidate tool to curb traffic congestion. 

Data Appendix 

A. Consistent MSA Definitions 

MSAs are defined as aggregations of counties. We use the 1999 MSA defini 

tions. In order to insure that our definitions are constant over time, we track changes 
in county boundaries back to 1920 and make adjustments to MSA definitions as 

required in each decade. 

B. HPMS Data 

We rely extensively on the Highway Performance Monitoring System (HPMS) 
data for 1983, 1993, and 2003, and slightly on the HPMS data for 1995 and 2001. 

These data are collected and maintained by the US Federal Highway Administration 
in cooperation with many subnational government agencies. Documentation is 

available in DOT (2003a, b, and 2005b). 
The HPMS consists of two parts. The universe data are supplied for most road 

segments in the interstate highway system and some other major roads, and pro 
vide a description of each segment. The sample data provide additional informa 
tion about all segments in the universe data, including an urbanized area code 
for segments falling in urbanized areas. For a sample of smaller urbanized area 

roads, the sample data also provide all data fields that occur in the universe and 

sample data. 

In general, each segment reported in the HPMS represents a larger set of similar 

segments (typically of the same road), called a sample. Thus, each reported segment 
is associated with an expansion factor that relates the length of the segment described 
in the data to the length of the sample it represents. Since states are required to 

report information on every interstate highway segment, all interstate highway seg 
ments should have an expansion factor of one. In fact, the average expansion factor 
for these segments is about 1.5, so that states seem not to be in compliance with 

reporting requirements. For noninterstate segments, principally smaller classes of 

roads, reporting requirements permit expansion factors of up to 100. In fact, a small 
number of larger expansion factors occur, but we exclude these segments from our 

sample. For urbanized-area roads in the relevant classes, reporting rules require that 
the union of all samples be the set of all urbanized-area roads. Loosely, urbanized 
area road segments are partitioned into sets of similar segments, and one segment 
from each set is reported in the HPMS sample data. In this sense, sample data repre 
sents all urbanized road segments subject to reporting requirements. 

For the interstate highway system, the HPMS records number of lanes, length, 
AADT, and county. By construction, road segments do not cross county borders. 
For segments in urbanized areas, the HPMS also provides an urbanized area code. 

This content downloaded from 141.211.4.224 on Thu, 14 May 2015 15:44:00 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


VOL. 101 NO. 6 DURANTON AND TURNER: THE FUNDAMENTAL LAW OF ROAD CONGESTION 2647 

Table 12—Summary Statistics for Our Main NPTS Variables 
and HMPS VKT for Corresponding Years 

Year: 1995 2001 

NPTS vehicle survey (annual) 
Mean vehicle km (person) 

Mean vehicle km (household) 

Mean vehicle km (vehicle) 

NPTS person survey (daily) 
Distance to work (km) 

Minutes drive to work 

Speed to work 

NPTS trip survey (daily) 
Total household person-km 

Total household person-minutes 

Mean household km/h 

Total HMPS VKT 

Interstate highways ('000 km) 
Major urban roads ('000 km) 

Number MSAs 

12,436 12,203 

(7,737) (8,398) 
32,546 30,352 

(19,672) (20,198) 
19,560 17,573 

(9,355) (9,030) 

20.4 19.4 

(21.6) (20.2 

22.4 21.3 

(17.3) (16.3) 
50.9 49.6 

(21.1) (22.1) 

134.8 134.5 

(119.9) (112.0) 
147.7 160.9 

(88.7) (90.7) 
48.4 43.9 

(12.2) (15.1) 

2,876,074 3,484,750 
5,530,845 6,624,656 

228 228 

Notes: Averaged over individuals or households. Means and standard deviations in parentheses. 

Since MSAs are county-based units, these data allow us to calculate VKT for the 

urbanized and nonurbanized area interstate systems by MSA. 

Within urbanized areas, the HPMS describes not only the interstate highway sys 

tem, but also all roads in the following functional classes: principal arterial-other 

freeways and expressways; principal arterial-other; minor arterial, collector, local. 

There is no mandated reporting of local roads, so they make up only a small share of 

the HPMS data and are excluded from our analysis. Our "major roads" are defined 

as the union of the remaining classes. The definitions of these road classes are given 
in DOT (1989) and span about 20 pages. Loosely, a local road is one that is predomi 

nantly used to access addresses on that road, e.g., a residential street. Any road used 

principally to connect local roads (but not an interstate) falls in one of the larger 

classes that we consolidate into major roads. 

C. NPTS data 

In Table 12, we report some descriptive statistics about our two waves of the 

NPTS. Surprisingly, these data show that driving distances per person, household, 

and vehicle all declined between 1995 and 2001. 

The "vehicle survey" provides a detailed description of each household motor 

vehicle, including the survey respondents' report of how many kilometers it was 

This content downloaded from 141.211.4.224 on Thu, 14 May 2015 15:44:00 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


2648 THE AMERICAN ECONOMIC REVIEW OCTOBER 2011 

driven in the past 12 months. We use this information to construct an estimate of 

total VKT for the household during the survey year. This information is reported 
in the top section of Table 12. The "person survey" describes travel behavior for 

each household member on a typical travel day. From this, we construct house 

hold mean commute distance, time, and speed for household members who drive 

to work. Table 12 shows that mean commute distance decreased from 20.4 km in 

1995 to 19.4 in 2001. This decrease in distance resulted in a small decrease in mean 

commute times despite a decline in speed. Finally, the "travel day" survey collects 

detailed information about each trip taken by each household member on a randomly 
selected travel day. These data allow the calculation of household person-kilometers 
of vehicle travel, along with the person-minutes required to accomplish this travel, 
and the average speed of this travel. Table 12 shows that total daily household per 
son-kilometers of travel was approximately constant over the study period, but that 

the time required to accomplish this travel increased from 147.7 minutes to 160.9 

minutes, and speed decreased from 48.4 to 43.9 km/h. 
The descriptive statistics in Table 12 point at stability or a small decline in VKT 

per household between 1995 and 2001. For the same period, the HPMS indicates 

increases of around 20 percent for VKT, as reported at the bottom of Table 12. It 

is natural to wonder whether these two findings are contradictory. To see that they 
are not, note that the NPTS and the HPMS report different measures of VKT.18 The 

NPTS reports a per household measure of VKT on all roads. On the other hand, the 

HPMS reports aggregate VKT on interstates and major urban roads within MSAs. 

Thus, the HPMS looks at a different set of roads than the NPTS does, and the 2001 

1995 difference reflects changes in commercial traffic and number of households, in 

addition to changes in VKT per household. 

D. Instruments 

Our measures of the 1947 interstate highway plan and the 1898 railroad network are 
taken from Duranton and Turner (2008) and are documented there. Further discussion 
of the 1947 highway plan is available in Michaels (2008) and Baum-Snow (2007). 

While our exploration routes variable is new, Duranton and Turner (2008) experi 
mented with a different formulation and found that it did not have much predic 
tive ability. In this initial formulation of the exploration route data, we treated the 

exploration route map in exactly the same way as we did the 1947 highway plan 
and the 1898 railroad map. That is, all routes are treated in exactly the same way 
and receive exactly the same weight. In particular, this means that well-used and 

important routes, such as the Oregon or Santa Fe Trails, are given the same weight 
as less successful routes. With this said, since the exploration routes map provides 
a line for each expedition it describes, even if this line is very close to the line for 
another expedition on the same route, the map does permit us to distinguish more 

intensively used routes from less. In particular, if we digitize the map and count 

18 We rule out sampling errors. NPTS data sample a large number of households, are broadly acknowledged to 
be of high quality, and their correlation with census data is also high, as mentioned above. Mark Schipper and Vicki 
Moorhead (2000) also provide evidence that reported VKT in the NPTS is highly consistent with odometer VKT 
from the 1994 Residential Transportation Energy Consumption Survey. As for the HPMS, it is carefully scrutinized 

by the Bureau of Transportation Statistics, which uses it as the basis of its Transportation Statistics Annual Report. 
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Figure 5. Construction of an Exploration Routes Index 

Notes: Right panel gives detail of original map of 1835-1850 exploration routes for a segment of the Oregon Trail 
near Salt Lake City (US Geological Survey 1970). Left panel shows incidence of exploration routes in same region. 
For this region, our measure of exploration routes is the count of grey pixels in the right panel. 

all pixels assigned to any route, we have a measure of the intensity with which a 

region was used by explorers between 1835 and 1850. This is precisely what we did. 

Figure 5 illustrates. 

The share of the democratic vote in the 1972 presidential election is calculated 

from the General Election Data for the US, 1950-1990, from the Inter-university 
Consortium for Political and Social Research (ICPSR). 

E. Geography 

Our data include five measures describing the physical geography of an MSA 

taken from the data used by Marcy Burchfield et al. (2006). The particular measures 

of physical geography that we use are: elevation range within the MSA, the rug 

gedness of terrain in the MSA, heating degree days, and cooling degree days and 

"sprawl" in 1992. Elevation range is the difference in meters between the elevation 

of the highest and lowest point in the MSA. Ruggedness is calculated by impos 

ing a regular 90-meter grid on each MSA and calculating the mean difference in 

elevation between each cell and adjacent cells. Heating and cooling degree days are 

engineering measures used to assess the demand for heating and cooling. Sprawl 
is the measure of sprawl calculated in Burchfield et al. (2006) and measures the 

share of undeveloped land in the square kilometer surrounding an average struc 

ture. More detail about these variables is available in Burchfield et al. (2006) and at 

http://diegopuga.org/data/sprawl/. 

F. Employment 

To measure employment we use the County Business Patterns data from the US 

Census Bureau. These data are available annually from 1983 to 2003. We construct 

disaggregated employment data at the two digit-level (with 81 sectors) to investigate 
whether the supply of interstate highways and other major roads affects the composi 
tion of economic activity and, in particular, employment in transportation-intensive 
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sectors. Between 1983 and 2003, three different industrial classifications have 

been used in the US: the standard industrial classification (SIC) which remained 

unchanged at the two-digit level until 1997; the 1997 North American Industry 
Classification System (NAICS) from 1998 to 2002; and the 2002 NAICS for 2003. 

Using the same cross walk as in Duranton and Turner (2008), we perform our 

employment regressions using SIC categories. 

G. Public Transit Infrastructure 

To comply with Section 15 of the Urban Mass Transportation Act, all public 
transit districts in the US submit annual reports to the federal government detail 

ing their assets and activities over the course of the year. Our data for 1984 bus 

service come from Table 3.6, p3-308, of DOT Urban Mass Transit Administration 

(1986). The Section 15 reports are available in electronic form starting in 1984. 
While these reports do not assign transit districts to an MSA, they contain enough 

geographic information, e.g., zip code, so that about 700 of the 740 transit districts 

that operate during 1984, 1994, or 2004 can be assigned to a non-MSA county or 
to an MSA. 

With this correspondence constructed, we count all "large buses" in each MSA 

at peak service for 1984. We use this daily average number of large buses operating 
at peak service in 1984 to measure an MSA's stock of public transit infrastructure. 
In our definition of large buses we include buses in the following Section 15 report 
ing classes: articulated bus; bus A (> 35 seats); bus B (25-35 seats); bus C (< 25 

seats); double-deck bus; motor bus; motor bus (private); street car; trolley bus. 

H. Socioeconomic Characteristics 

To measure MSA socioeconomic characteristics, we use three data sources. The 
share of manufacturing employment is computed from the County Business Patterns 
for 1983, 1993, and 2003 to match the years of data for VKT and roadway. The 
1980 segregation index is calculated from 1980 census tract-level data and is based 
on the measure of housing segregation described in equation (3), p. 836, of David 
M. Cutler and Glaeser (1997). Finally, the share of college educated workers, share 
of poor, and average earnings are computed using data from the 1980, 1990, and 
2000 decennial censuses. From the education questions in these three censuses, we 
are able to build a consistent variable capturing the share of residents with some 

college education (or more) by MSA. The three censuses also contain a question 
about poverty, which can be aggregated in the same way. Individual earnings are 
also aggregated in a similar fashion with the caveat that the bands and the top code 
differ across censuses. 
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