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Gibrat's Law for (All) Cities 

By JAN EECKHOUT* 

Two empirical regularities concerning the size distribution of cities have repeatedly 
been established: Zipfs law holds (the upper tail is Pareto), and city growth is 
proportionate. Census 2000 data are used covering the entire size distribution, not 
just the upper tail. The nontruncated distribution is shown to be lognormal, rather 
than Pareto. This provides a simple justification for the coexistence of proportionate 
growth and the resulting lognormal distribution. An equilibrium theory of local 
externalities that can explain the empirical size distribution of cities is proposed. 
The driving force is a random productivity process of local economies and the 
perfect mobility of workers. (JEL D30, D51, J61, R12) 

The law of proportionate effect will there- 
fore imply that the logarithms of the vari- 
able will be distributed following the 
[normal distribution]. 

-Robert Gibrat (1931) 
The way the population is distributed across 

geographic areas, while continuously changing, 
is not random. In fact, there is a strong tendency 
toward agglomeration, i.e., the concentration of 
the population within common restricted areas 
like cities. And while physical geography-riv- 
ers, coasts, and mountains-may have played a 
crucial role in early settlements, in the current 
day and age, the evolution of the population 
across geographic locations is an extremely 
complex amalgam of incentives and actions 
taken by millions of individuals, businesses, 
and organizations. Most people will agree that 
economic factors are the principal determinant 
of the dynamics of city populations. In the last 
decade, Detroit, for example, experienced a de- 
cline in population as the manufacturing indus- 
try in the area suffered a severe downturn. At 
the other extreme, when the high-technology 
industry was booming, villages, towns, and cit- 

* Department of Economics, University of Pennsyl- 
vania, 3718 Locust Walk, Philadelphia, PA 19104 
(e-mail: eeckhout@ssc.upenn.edu; http://www.ssc.upenn. 
edu/-eeckhout/). I am grateful for discussion and comments 
from Pol Antras, Jesus Fernmndez-Villaverde, Xavier 
Gabaix, Gregory Kordas, Robert Lucas, Samuel Pessoa, 
Esteban Rossi-Hansberg, Stephen Yeaple, the editor, and 
two referees. Jesus Fernmndez-Villaverde provided the code 
for the nonparametric kernel estimator. 

ies in the San Francisco Bay area experienced 
higher-than-average population growth. In- 
creased productivity due to technological 
progress in the e-business sector led to the cre- 
ation of such new companies as Yahoo! and the 
expansion of such existing companies as HP 
and Apple. This in turn increased labor demand 
and wages, which induced many individuals to 
relocate to the Bay area. No doubt an exodus 
from the Bay area has been at work since the 
technology market crashed at the beginning of 
the current decade. This confirms that agglom- 
eration and residential mobility of the popula- 
tion between different geographic locations are 
tightly connected to economic activity. 

Given this direct connection between eco- 
nomic activity and population mobility, it has 
long been recognized that fully understanding 
geographic economic activity involves under- 
standing population mobility and economic 
driving forces.1 A crucialfirst step is to provide 
an accurate description of agglomeration and 
population mobility. This involves accounting 
for the way the population is distributed over 
different geographic locations and accounting 
for the evolution over time. Once population 
mobility is understood, the second step involves 
analyzing the underlying economic mecha- 
nisms. Because economic factors are of para- 
mount importance in providing incentives for 
individuals and businesses to move to different 
locations, being able to model the economic 

See, among others, George K. Zipf (1949), J. Vernon 
Henderson (1974) and Paul Krugman (1996). 
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forces is of direct importance, especially since 
different cities are subject to different types of 
government policies, both within a city and 
between cities. The motives for intervention 
often depend on exteralities (see Robert E. 
Lucas and Esteban Rossi-Hansberg, 2002, for a 
discussion). Through their interventions, poli- 
cymakers affect economic factors, in particular 
equilibrium prices of land and labor and, there- 
fore, decisions by individuals and businesses on 
where to locate. For example, city-specific 
income-tax incentives will affect after-tax 
wages and will make certain locations more 
attractive than others. This in turn will lead to a 
change in the number of people deciding to 
establish residence in certain locations. Other 
examples include transportation taxes and sub- 
sidies within and between cities (for exam- 
ple the subsidization of roads, railways, and 
airports),2 regional subsidies, and agriculture 
subsidies that benefit companies in rural towns. 
An equilibrium theory of choice of geographic 
location (city, town, or village) driven by mar- 
ket wages and property prices is necessary for 
the optimal design and evaluation of such 
policies. 

Unfortunately, the literature has faced sub- 
stantial difficulties in the description of popula- 
tion mobility. The difficulty derives from a 
puzzle caused by two robust empirical regular- 
ities. The first empirical regularity is that the 
largest cities satisfy Zipf's law. Despite the ap- 
parent chaotic evolution of city populations, 
surprising regularities have been observed in the 
size distribution of cities. As early as 1682, 
Alexandre Le Maitre observed a systematic pat- 
tern of the size distribution of cities in France. 
He describes how the size of Paris related to two 
groups of cities, each of them proportionally 
smaller than Paris. But it was not until 1913 that 
Felix Auerbach, and then George Kingsley Zipf 
in 1949, formally established the first empirical 
regularity. They show that within a country, the 
size of the largest cities is inversely proportional 
to their rank. For example, in the United States, 
New York City is roughly twice the size of Los 
Angeles, the second largest city, and about three 
times the size of Chicago, the third largest city. 

2 
Transportation expenditure in 2002 was $62 billion 

(3.1 percent of total government outlays; 9 percent of 
outlays excluding transfers) (www.whitehouse.gov/omb/ 
budget). 

The proportionality of rank and size implies that 
the upper truncated distribution is the Pareto 
distribution3 (or power distribution) with expo- 
nent equal to one. Zipf's finding has been 
shown to be robust, both over time and across 
countries, though with varying Pareto expo- 
nents. The second empirical regularity is that 
the growth rate of city populations does not 
depend on the size of the city. Even though 
growth rates between different cities vary sub- 
stantially, there is no systematic pattern with 
respect to size, i.e., the underlying stochastic 
process is the same for all cities. This is labeled 
the proportionate growth process. Empirical re- 
search4 has repeatedly shown that city growth is 
proportionate: larger cities on average do not 
grow faster or slower than smaller cities. 

While it is surprising that such regularities 
emerge from a highly intricate underlying 
mechanism, there is also a puzzle: the two reg- 
ularities cannot easily be reconciled.5 In partic- 
ular, the proportionate growth process (the 
second regularity) gives rise to the lognormal 
distribution, not the Pareto distribution (i.e., 
Zipf's law, the first regularity). This is a well- 
known proposition established by Gibrat (1931) 
and originally formulated by the astronomer 
Jacobus C. Kapteyn (1903): a stochastic growth 
process that is proportionate gives rise to an 
asymptotically lognormal distribution.6 This is 
not to say that a proportionate growth process 
plus "something else" cannot give rise to the 
Pareto distribution or another distribution. 
There is a long tradition in the economics of 
income inequality starting with David G. Cham- 
perowne (1953) and industrial organization 

3 Vilfredo Pareto (1896) is credited with the discovery 
that the distribution of individual income satisfies a power 
law, the Pareto distribution. 

4 See, among others, Edward Glaeser et al. (1996), 
Jonathan Eaton and Zvi Eckstein (1997), and Yannis M. 
Ioannides and Henry G. Overman (2003). 

5 Krugman (1995) writes: "We have to say that the 
rank-size rule is a major embarrassment for economic the- 
ory: one of the strongest statistical relationships we know, 
lacking any clear basis in theory." 

6 Kapteyn (1903) studies skew distributions, mainly in 
biology, and establishes that they are driven by a simple 
Gaussian process. If a variable y is generated by additive 
random shocks which give rise to an asymptotically normal 
distribution, then given a transformation y = f(x), the 
variable x has a skew distribution, derived from the trans- 
formed stochastic process. One such transformation is y 
In x. 
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EECKHOUT: GIBRAT'S LAW FOR (ALL) CITIES 

(see John Sutton, 1997, for an overview and 
Boyan Jovanovic, 1982) studying the relation 
between proportionate growth and size distribu- 
tions different from the lognormal. With respect 
to the size distribution of cities, Xavier Gabaix 
(1999) and Aharon Blank and Sorin Solomon 
(2000) propose a resolution of the puzzle and 
show that proportionate growth processes can 
generate Zipf's law at the upper tail.7 

The purpose of this paper is twofold. First, 
a new resolution of the puzzle is uncovered 
regarding the two empirical regularities, thus 
providing an accurate description of popula- 
tion mobility. While an accurate description 
of population mobility per se may not be of 
primary interest, it does have fundamental im- 
plications for the underlying economic mecha- 
nism, which in turn drives the population 
mobility. The second purpose is to propose and 
solve an equilibrium theory of local externali- 
ties. The equilibrium theory provides an analy- 
sis of the underlying economic mechanisms that 
is consistent with the empirically observed pop- 
ulation mobility. This approach of providing an 
empirically consistent theory is in line with the 
central thesis in this paper: population mobility 
is driven by economic forces. Such an empiri- 
cally consistent equilibrium theory is novel be- 
cause heretofore the literature8 has focused on 
solving the puzzle concerning population mo- 
bility. The main interest of this empirically con- 
sistent equilibrium theory is that it facilitates the 
evaluation of government policies that affect 
citizens' mobility decisions. Is it efficient to 
provide federal subsidies to small cities to at- 
tract residents? What is the effect of govern- 

7 
They consider random growth processes with "some- 

thing else"-the entry of new cities-and apply a process 
developed in Champerowne (1953) and Harry Kesten 
(1973). While these processes do generate Pareto distribu- 
tions, Blank and Solomon (2000) point out that the details 
specifying and enforcing the smallest size of the cities are 
crucial, as are the rules for creating new entering cities. 
Whether or not the resulting limiting distribution is Pareto 
with exponent equal to one is very sensitive to this entry 
process. Moreover, testing whether the entry process satis- 
fies the exact and detailed requirements for the Pareto 
distribution is a challenging empirical endeavor (for the 
metropolitan areas in the United States, for example, there 
has been no entry or exit in the set of MAs between 1990 
and 2000; the 276 MAs in 1990 are identical to those in 
2000). To date, no such evidence has been provided. 

8 Some notable exceptions are discussed below. 

ment-financed local transportation in large 
cities? 

The breakthrough in the current resolution of 
the puzzle (the first purpose of this paper) de- 
rives from the availability of Census 2000 data. 
The new dataset is substantially larger than 
those of earlier censuses. The current data in- 
clude observations on the entire size distribu- 
tion of geographic locations, referred to in the 
Census as "places." For the year 2000, there are 
observations on 25,359 places, including cities, 
towns, and villages,9 ranging in population from 
1 to over 8 million. Previously in the literature, 
only the truncated distribution, i.e., the upper 
tail of the distribution of the 135 largest cities, 
or metropolitan areas (MAs), was considered, 
i.e., 0.5 percent of the current sample and 30.2 
percent of the sample population. Using the new 
data, it is shown that the size distribution of the 
entire sample is lognormal and not Pareto. 
Moreover, for those observations for which 
1990 data also exist, the growth rate of cities is 
calculated, and the second regularity, that 
growth is independent of city size, is confirmed. 
As a result, the growth process is shown to be 
proportionate. The proportionate growth pro- 
cess, together with the lognormality of the size 
distribution, establishes that when considering 
all cities and not just the upper tail of the 
distribution, Gibrat's prediction concerning the 
stochastic process holds. 

The second purpose of this paper is to ana- 
lyze an equilibrium model consistent with the 
empirically observed population mobility. A 
theory of local externalities is proposed. Like 
those in Lucas and Rossi-Hansberg (2002), the 
cities in this model are characterized by local 
externalities-both positive production exter- 
nalities (spillovers from nearby factors of pro- 
duction) and negative consumption externalities 
(lost leisure time from traffic congestion). 
Those externalities are local, which means they 
affect the population within a city only, and 
typically they depend on the size of the city's 
population. In large cities, for example, firms 
and workers benefit more from the availability 
of deep markets for employees and jobs, and 
those cities also have larger "knowledge spill- 

9 In what follows, the term "city" will be used to indicate 
a place. When a city (as opposed to a town or a village) is 
referred to, this will be made explicit. 
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overs." Information concerning new technolo- 
gies and products spills over faster in markets 
with high degrees of local interaction, like those 
of large cities. Simultaneously, workers in 
larger cities also impose negative externalities 
on each other because commuting times are 
longer. The economy differs from the one in 
Lucas and Rossi-Hansberg (2002) because of 
the explicit mobility between cities, rather than 
within cities. The aim is to capture the notion of 
competition between geographic locations, i.e., 
perfectly mobile citizens making location deci- 
sions between different cities. Local externali- 
ties within cities regulate the mobility of 
citizens between different cities (i.e., there are 
no externalities between cities). It is shown that 
the local externality model economy predicts 
behavior that is consistent with the empirical 
city growth process. 

The only remaining issue to resolve is how it 
is possible that Zipf's law is repeatedly con- 
firmed in the literature, while the underlying 
distribution is lognormal. The Pareto distribu- 
tion is very different from the lognormal, so it is 
obvious that if the true distribution is lognor- 
mal, the entire distribution can never be fit to a 
Pareto distribution at the same time. Consider 
Figure 1 with a plot of the density function of 
the lognormal and that of the Pareto distribution 
(both on a In scale); observe that the lognormal 
on a log scale is the normal density function. 
The density of the Pareto distribution is down- 
ward sloping, whereas the lognormal density is 
initially increasing and then decreasing (given 
symmetry, half the observations are in the in- 
creasing part). If the underlying distribution is 
lognormal, then goodness of fit tests will cate- 
gorically reject the Pareto distribution. Still, 
when regressing log rank on log size for the entire 
distribution,10 the coefficient comes out signifi- 
cant. Estimating a linear coefficient when the 
underlying empirical distribution is not Pareto 
(i.e., the relation is nonlinear) can obviously 
produce a significant estimate. This regression 
test merely confirms that there is a relation 
between size and rank, but it does not provide a 
test for the linearity of this relation. As such, 
testing the significance of the linear coefficient 

Panel A 

Panel B 
0.25- 

0,2- 

0.15' 

0.1' 

0,05" 

0 2 4 6 8 10 12 14 

FIGURE 1. DENSITY OF LOGNORMAL (PANEL A) AND 
PARETO (PANEL B) DISTRIBUTION 

16 

is not the equivalent of a goodness-of-fit test for 
the Pareto distribution.l 

More important though is that until now the 
literature considered the truncated distribution 
(typically, the truncation point is at In size equal 
to 12 on the horizontal axis, i.e., for only 135 
cities). At the very upper tail of the distribution, 
there is no dramatic difference between the den- 
sity function of the lognormal and the Pareto. 
Now both the truncated lognormal and the Pa- 
reto density are downward sloping and similar 
(the Pareto is slightly more convex). As a result, 
both the Pareto and the truncated lognormal 
trace the data relatively closely. The problem is 

1 See also Gabaix and loannides (2003) on the short- 
comings of OLS. 

o0 Thiss is the standard procedure in the literature to 
verify for Zipf's law. 

I f I . t 1- + -- 
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that the estimated coefficient on the Pareto dis- 
tribution is extremely sensitive to the choice of the 
truncation point: as the truncation point increases 
on the horizontal axis, the estimated Pareto coef- 
ficient increases, while the estimated lognormal 
coefficients remain unchanged. Moreover, for 
lower truncation points, the Pareto fits the data 
less and less well. In this paper, we show that 
these observed empirical changes in the estimated 
Pareto coefficient are theoretically consistent with 
the comparative static of a changing truncation 
point of the lognormal distribution.12 

Finally, there is a growing literature propos- 
ing equilibrium models of economic activity 
with mobility of citizens that can account for 
Zipf's law.13 Rossi-Hansberg and Mark Wright 
(2004) propose a dynamic general equilibrium 
theory with population mobility and balanced 
growth driven by industry-specific shocks. While 
their theory can explain Zipfs law for the size 
distribution, the model can also explain deviations 
of the empirical size distribution from Zipfs 
law.14 This attempt to account for empirically 
observed differences from Zipf's law using 
growth theory is novel. The results they find con- 
cering the truncated size distribution are consis- 
tent with those found in the current paper, 
confirming the importance of deviations from 
Zipf's law. 

This paper is organized as follows. In Section I, 
the Census 2000 data are described in detail. The 
size distribution is shown to be lognormal, and the 
growth process proportionate. In Section II, the 
implications, both empirical and theoretical, for 
estimation of Zipfs law are analyzed when the 
true underlying distribution is lognormal. In Sec- 
tion III, a theory of local externalities is proposed, 
consistent with Gibrat's proposition that propor- 
tionate growth leads to a lognormal distribution. 
Finally, some concluding remarks are made in 
which the parallel is drawn between our results 
and findings in the exact sciences. 

12 The sensitivity of the Pareto coefficient to the trunca- 
tion point has been observed in the literature (for an over- 
view, see Gabaix and Ioannides, 2003). Explanations 
offered for the sensitivity differ, however, from the expla- 
nation proposed here, i.e., that the underlying true distribu- 
tion is lognormal. 

13 See, among others, Rossi-Hansberg and Wright 
(2004) and Gilles Duranton (2002). 

14 Unfortunately, when predicting a size distribution that 
is different from the Pareto distribution, their model no 
longer satisfies proportionate growth. 

I. The Empirical Size Distribution of Cities 

A. The Data 

Newly available data from Census 2000 are 
used.15 The dataset for deriving the distribution 
of cities is novel. The units of account are 
denoted by the Census Bureau as "places." 
Places are either legally incorporated under the 
laws of their respective state or are Census 
Designated Places (CDP). Incorporated places 
have political/statistical descriptions of city, 
town (except in New England, New York, and 
Wisconsin), borough (except in Alaska and 
New York), or village. People living in loca- 
tions that are not incorporated are legally resi- 
dent in the respective counties. Incorporated 
places can cross county boundaries. Because a 
considerable fraction of the population lives in 
places that are not incorporated,16 the Census 
Bureau designates such places CDPs. Accord- 
ing to the Census Bureau, a CDP is a "statistical 
entity that serves as a statistical counterpart of 
an incorporated place for the purpose of pre- 
senting census data for a concentration of pop- 
ulation, housing, and commercial structures that 
is identifiable by name, but is not within an 
incorporated place."'7 In the new census data, 
the CDPs are included for the first time without 
any restrictions.18 The data on places for all 
U.S. states (including Hawaii and Alaska, and 
the commonwealth of Puerto Rico) will be used. 
In what follows, place (whether a city, town, or 
village) and city will be used interchangeably. 

The main advantage of using these census 
data is that they cover the entire population size 
distribution. Moreover, with the inclusion of the 
CDPs in 2000, this new source of data repre- 
sents the entire geographic concentration of the 
U.S. population. In the year 2000, 208 million 
of 281 million individuals (74 percent) were 
living in a total of 25,359 places. Table 1 reports 
on the population size in 2000 of the 10 largest 
"places." 

15 Source: www.census.gov/main/www/cen2000.html. 
16 

Very often, whether a place is incorporated depends 
on state law. For example, under state law in Hawaii, there 
exist no incorporated places. 

17 Source: www.census.gov. 
18 For Census 2000, CDPs did not have to meet a 

population threshold to qualify for the tabulation of census 
data. 
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TABLE 1-TEN LARGEST CITIES IN THE UNITED STATES 

Rank City Population S SNYIS 

1 New York, NY 8,008,278 1.000 
2 Los Angeles, CA 3,694,820 2.167 
3 Chicago, IL 2,896,016 2.753 
4 Houston, TX 1,953,631 4.099 
5 Philadelphia, PA 1,517,550 5.277 
6 Phoenix, AZ 1,321,045 6.062 
7 San Diego, CA 1,223,400 6.546 
8 Dallas, TX 1,188,580 6.738 
9 San Antonio, TX 1,144,646 6.996 

10 Detroit, MI 951,270 8.419 

Note: SNY/S denotes the ratio of population size relative to 
New York. 
Source: Census Bureau, 2000. 

A substantial portion of research into the size 
distribution of the U.S. population has been 
done using the MA19 as the unit of measure- 
ment (see, for example, Krugman, 1996; 
Gabaix, 1999; Ioannides and Henry G. Over- 
man, 2003). An MA typically covers one (or 
several) large cities. The largest metropolitan 
area is New York-Northern New Jersey-Long 
Island, including the cities of New Haven, Con- 
necticut, Newark and Trenton, New Jersey, and 
several smaller towns in eastern Pennsylvania. 
The ten largest MAs and their population size 
are listed in Table 2. 

The total number of MAs in the United States 
is 276, the smallest of which is Enid, Oklahoma, 
with a population of 57,813. In 2000, 80 percent 
of the entire U.S. population lived in MAs. At 
first sight, it may seem surprising that 80 per- 
cent lived in the 276 MAs, while only 73 per- 
cent lived in 25,359 places. The reason is that 
MAs cover huge geographic areas. For exam- 
ple, Trenton, New Jersey, is 64 miles from New 
York City and 144 miles from New Haven, 
Connecticut. As a result, MAs include a large 
population living in rural areas which are not 
counted as places. Consider, for example, Mer- 
cer County, New Jersey, in the MA of New 
York-Northern New Jersey-Long Island, which 
includes Princeton and Trenton. In 2000, Mercer 
County had a population of 350,761, of which 
only about 31 percent lived in incorporated places. 

19 
According to the Census Bureau definition, an MA 

"must include at least one city with 50,000 or more inhab- 
itants, or a Census Bureau-defined urbanized area (of at 
least 50,000 inhabitants) and a total metropolitan population 
of at least 100,000 (75,000 in New England)." 

B. The Size Distribution 

Over the entire size distribution, the median 
city has a population of 1,338. Figure 2 plots the 
empirical density function on a natural logarith- 
mic (In) scale, together with the theoretical log- 
normal density for the empirically observed 
mean and variance. Figure 3 plots the cumula- 
tive density function. The sample mean (in ln, 
standard error in brackets) is ,P = 7.28 (0.01) 
and the standard deviation is &- = 1.75. The 
theoretical density function of the lognormal 
size distribution is normal in In S and given by 
0(/(, C): 

(1) b(/, C) = 2 e -(lnS - /)2/26'2 

A Kolmogorov-Smirnov (KS) test of good- 
ness of fit of the empirical density function 
against the lognormal with sample mean = 
7.28 and sample standard deviation & = 1.75 
generates the KS test statistic D = 0.0189, and 
the corresponding p-value obtained is 1 percent. 
This is supporting evidence in favor of lognor- 
mality of the size distribution. Though the fit is 
remarkable, it is not perfect. There seems to be 
some skewness (third moment is 0.21) and the 
median value is 7.20 (with mean of 7.28). On 
the other hand, there is hardly any kurtosis (the 
fourth moment is 0.03). Possibly there is some 
censoring (most likely at the bottom of the 
distribution). The data collected may be con- 
taminated by differences between state legisla- 
tion with respect to legal incorporation, in 
particular for small places. In addition, since the 
data contain CDPs, the decision procedure by 
the Census Bureau to designate a nonincorpo- 
rated place may depend on the size of the place 
and, as a result, it will affect the size distribution 
of places, in particular at the bottom end. Fur- 
thermore, given the extremely large sample size 
of n = 25,359, small deviations from the theo- 
retical distribution are exaggerated in goodness 
of fit tests. It is surprising that, despite some 
potential shortcomings of the data, the empirical 
size distribution fits the lognormal distribution 
that well. 

Before analyzing the properties of the city 
growth process, a fundamental issue remains: 
what is the appropriate economic unit that 
should be studied? As Tables 1 and 2 highlight, 
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TABLE 2-TEN LARGEST METROPOLITAN AREAS IN THE UNITED STATES 

Rank MA Population S SNY/S 

1 New York-Northern New Jersey-Long Island, NY-NJ-CT-PA 21,199,865 1.000 
2 Los Angeles-Riverside-Orange County, CA 16,373,645 1.295 
3 Chicago-Gary-Kenosha, IL-IN-WI 9,157,540 2.315 
4 Washington-Baltimore, DC-MD-VA-WV 7,608,070 2.787 
5 San Francisco-Oakland-San Jose, CA 7,039,362 3.012 
6 Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD 6,188,463 3.426 
7 Boston-Worcester-Lawrence, MA-NH-ME-CT 5,819,100 3.643 
8 Detroit-Ann Arbor-Flint, MI 5,456,428 3.885 
9 Dallas-Fort Worth, TX 5,221,801 4.060 

10 Houston-Galveston-Brazoria, TX 4,669,571 4.540 

Note: SNy/S denotes the ratio of population size relative to New York. 
Source: Census Bureau, 2000. 
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FUNCTIONS 

cities and MAs represent different notions about 
the corresponding theory of an economic unit. 
And depending on the definition, we are study- 
ing different objects and therefore different dis- 
tributions. As is the case with comparisons of 
countries, we do not have a perfect justification 
for using a particular unit of account when 
comparing cities. In our theory below, we con- 
sider local exteralities that do not affect agents 
outside the economic unit as the defining char- 
acteristic of a city. In reality of course, no 
externality is purely local. One may therefore 
want to interpret this assumption as a matter of 
the extent to which externalities do or do not 
affect agents outside a given city. The danger is 
that the partition into economic units is either 
too fine or, at the other extreme, too coarse. The 
externalities for some agents in one part of a 
given economic unit (say those living in New 
Haven) may not have an impact on those living 
in different parts of the same unit (say Prince- 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

City Size (In scale) 
data -lognormal 

FIGURE 3. EMPIRICAL AND THEORETICAL CUMULATIVE 

DENSITY FUNCTIONS 

ton). Moreover, different research objectives 
may call for the use of different units of ac- 
count. For example, if one is interested in ana- 
lyzing the economic impact of airports, the MA 
seems a natural unit of account, while cities 
may be more appropriate when studying 
schools, public transportation, or waste collec- 
tion. In past research, both MAs and cities have 
proven to be useful and relevant economic 
units, and both have been studied extensively. 

In this paper, cities are chosen for several 
reasons. In addition to the fact that cities are a 
natural economic unit for studying the local 
externalities that are modeled in Section III, 
there is a practical reason: the availability of 
data. We want to use data that cover the entire 
range of the populations, in particular the 
smaller ones. Because MAs are defined by the 
Census Bureau only for large populations (MAs 
must include "at least one city with 50,000 or 
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more inhabitants"), the MA dataset does not 
cover the entire size distribution. And even if 
the dataset spans the entire domain of the size 
distribution of all cities, not all inhabitants live 
in cities, towns, or villages.20 Unfortunately, 
these restrictions do not allow for the possibility 
of augmenting the dataset to include popula- 
tions that are currently not covered.21 It should 
be noted that the current dataset of all cities has 
already been augmented to form the largest 
possible dataset that is feasible, with the inclu- 
sion of the census-defined CDPs. This increases 
the number of cities by 31 percent, from 19,361 
to 25,359. 

The fact that part of the population is not 
covered is potentially a cause for concern, be- 
cause rather than capturing deep patterns of 
populations and population dynamics, we may 
merely be describing the idiosyncrasy of the 
jurisdictional formation in the United States. 
The population that is not covered may be dis- 
tributed in a completely different way from the 
lognormal distribution. And since we cannot 
assign that population to any geographic area 
comparable to a city, there is no hope of know- 
ing how the remainder is distributed. The log- 
normality seems to be a strong regularity, 
however, from whichever perspective popula- 
tion dynamics is considered. First, while we 
have no way of showing that the distribution of 
MAs is lognormal given the truncation by def- 
inition, we show below that even for MAs, 
changes in the truncation point produce changes 
in the estimated Zipf coefficient that are consis- 
tent with the fact that the underlying upper tail 
is derived from the lognormal. Second, the size 
distribution of CPDs is pretty close to the entire 
distribution of cities and hence the lognormal. 
And finally, in the Appendix we show the re- 
sults of further analysis using additional data 
that are available from the Census. We plot the 
size distribution of counties, which covers the 
entire U.S. population (see Figure A-1 and 
Table A-1 in Appendix A for the ten largest 

20 All citizens belong to a county, which is the primary 
legal division and the functioning governmental unit. 

21 Those residual populations are included in the coun- 
ties, and after accounting for the cities, residual populations 
very often are located in different geographic areas, sepa- 
rated by cities. To make things even worse, many cities 
extend over different counties, therefore guaranteeing that 
parts of the residual populations are counted twice. 
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FIGURE 4. SCATrER PLOT OF CITY GROWTH AGAINST 
CITY SIZE 

counties). While it is hardly convincing to make 
a case for counties as the relevant economic 
unit, it is surprising that even the size distribu- 
tion of counties is close to the lognormal. Look- 
ing at population dynamics from the perspective 
of different economic units and including as 
large a fraction as possible of the U.S. popula- 
tion, there is a strong pattern that is consistent 
with lognormality. 

C. Proportionate City Growth 

For the cities in the upper tail of the size 
distribution, population growth has repeatedly 
been shown to satisfy constant proportionate 
growth.22 These findings can be extended be- 
yond those for the upper tail of the distribution. 
We therefore use the data on population size for 
places in the United States from both the 1990 
and 2000 Censuses. Unfortunately, 1990 Cen- 
sus data do not include the CDPs. As a result, 
the sample size is significantly smaller (19,361 
instead of 25,359). Figure 4 shows the scatter 
plot of growth against city size (on In scales). 
Mere observation of the scatter plot seems to 

22 Glaeser et al. (1996) have shown this to be true for the 
largest cities in the United States. Eaton and Eckstein (1997) 
have confirmed this for the largest cities in France and 
Japan. In a detailed investigation, Ioannides and Overman 
(2003) nonparametrically estimate the mean and variance of 
growth rates conditional on size for the largest MAs in the 
United States. They accept the hypothesis that the city-size 
growth rate is constant across cities of different sizes, i.e., 
population growth is proportionate. 
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support that growth is independent of size. In 
what follows, the dependence relation of growth 
on size is analyzed in greater detail. We perform 
both nonparametric and parametric regressions 
of growth on size. 

First, we perform a nonparametric regression 
of growth on size.23 The standard parametric 
regressions as performed below provide us only 
with an aggregate relationship between growth 
and size, which is constrained to hold over the 
entire support of the distribution of city sizes. In 
contrast, the nonparametric estimate allows 
growth to vary with size over the distribution. 
The regression relationship we model is there- 
fore 

gi = m(Si) + Ei 

for all i = 1,..., 19361. The objective is to 
provide an approximation of the unknown rela- 
tionship between growth and size using smooth- 
ing, without making parametric assumptions 
about the functional form of m. Before estimat- 
ing m, we report the distribution of growth rates 
for each decile of the size distribution. Follow- 

23 This section on the nonparametric analysis follows 
closely the analysis in Ioannides and Overman (2003). We 
derive a sequence of results for our dataset of all cities 
similar to theirs, obtained for a time-series dataset on the 
largest MAs. 

ing Ioannides and Overman (2003), we use the 
normalized growth rate (the difference between 
the growth rate and the sample mean divided by 
the standard deviation). In Figure 5, the stochas- 
tic kernel density24 is plotted for each of the 10 
deciles. Fixing a particular decile in the distri- 
bution, we can observe the distribution of 
growth rates within that decile. Figure 6 reports 
the contour plot of the same stochastic kernel, 
i.e., the vertical projection of the density func- 
tion. Both figures illustrate that the distribution 
of growth rates is strikingly stable over different 
deciles. The best illustration of the size inde- 
pendence is the fact that the contour lines are 
parallel. The distribution is slightly skewed (the 
mode is just below zero), and the mode appears 
fairly constant over different deciles. The same 
is true for the variance. While the variance of 
the lowest decile seems to be somewhat higher 
(the contour lines fan out somewhat), there 
seems to be little change in the spread of the 
distribution for higher deciles. 

We now proceed to estimate the regression 
relationship gi = m(Si) + si, i = 1,..., 19361, 
where gi is the normalized growth rate, i.e., the 

24 Each stochastic kernel is calculated using the band- 
width derived with the automatic method corresponding to 
the Gaussian distribution (see Bernard W. Silverman, 
1986). 
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difference between growth and the sample mean 
divided by the sample standard deviation, and Si 
is the log of the population size of a city. We 
will approximate the true relationship by the 
regression curve m(s) for all s in the support of 
Si. The estimate of m(s) will be denoted h(s) 
and is a local average around the point s. This 
local average smooths the value around s, and 
the smoothing is done using a kernel, i.e., a 
continuous weight function symmetric around s. 
The kernel K used in the remainder of the paper 
will be an Epanechnikov kernel.25 The band- 
width h determines the scale of the smoothing, 
and Kh denotes the dependence of K on the 
bandwidth h. With the kernel weights, we cal- 
culate the estimate of m using the Nadaraya- 
Watson method,26 where 

n 

n-1 Kh(S- Si)gi 

m-(s) = 
n 

n-l 2 Kh(s- Si) 

i= 1 

In Figure 7 there is a plot of m(s) calculated 
for a bandwidth of h = 0.5 (see Silverman, 
1986). The Figure also shows the bootstrapped 

12 14 16 

FIGURE 7. KERNEL ESTIMATE OF POPULATION GROWTH 

(BANDWIDTH 0.5) 

95-percent confidence bands (calculated from 
500 random samples with replacement). In line 
with the earlier results, the nonparametric esti- 
mate of the conditional mean is stable across 
different population sizes, except for the very 
bottom of the distribution.27 The estimate seems 
to exhibit some slightly inverted U-shape, with 
somewhat higher growth rates in the middle 
range of population sizes and lower growth at 
the ends. If the underlying relation between 
growth and size is constant, then the estimate 
will lie in the 95-percent confidence bands. This 
seems to suggest that, except for some values 
near the lower boundary, we cannot reject that 
growth is independent of size. Observe that 
because the kernel is a fixed function and 
boundary observations have support only on 
one side of the kernel, the kernel estimates near 
the boundaries must be read with caution. 

In Table B-1 in Appendix B, some further 
descriptive statistics are reported for growth 
rates over the entire support of the distribution. 
Consistent with the kernel estimates, average 
growth rates seem to be constant, except at the 
very bottom of the distribution. We also calcu- 
late the standard deviation and the Interquartile 
Range (IQR) of the growth rate. The IQR is 
defined as the difference between the seventy- 
fifth and twenty-fifth percentiles (Q3 - Q1). 
This provides an indication of the variation in 
growth rates. For the largest 100 cities, growth 
rates vary less, whereas the smallest 100 cities 
exhibit higher variation in growth rates. The 

25 Results below have been replicated using the Gaussian 
kernel and reveal no differences with those using the Ep- 
anechnikov kernel. 

26 See Wolfgang Hardle (1990). 

27 At the bottom of the distribution there is also more 
variation in growth rates (see IQR calculations below). 
Because the confidence bands impose a requirement over 
the entire domain of the size distribution, the width of the 
bands is likely to be affected by the variation at the bottom. 
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standard deviation of the growth rate of the 
largest 100 cities is an order of 4 to 5 times 
smaller compared to the entire sample (0.158 
versus 0.729). Also for the IQR there is a de- 
crease at the top of the distribution (0.154 ver- 
sus 0.199), but to a lesser extent than in the case 
of the standard deviation. This seems to indicate 
that the tails of the distribution of growth rates 
of the top 100 cities are not as fat. For the 
smallest 100 cities, the variation in growth 
rates as measured by the IQR increases28 
2.5 times relative to the IQR for the entire 
sample (0.493 versus 0.199). For the remainder 
of the support of the size distribution, the IQR 
of growth rates is more or less constant for all 
sizes, except for the bottom decile of the size 
distribution. Figure B-1 in Appendix B plots 
the IQR for each decile. Observe the sharp in- 
crease in the IQR at the bottom decile of the 
distribution (0.297 versus 0.199 for the entire 
sample). 

The proportionate growth process that satis- 
fies Gibrat's law and that gives rise to a log- 
normal distribution is also characterized by a 
size-independent variance. The kernel estimate 
of the variance 62(s) (see Hardle, 1990) is cal- 
culated as 

n 

n-1 Kh(S-Si)(gi -m (s))2 

a6(s) = 
i = 1 

n 

n-' I Kh(s 
- 

Si) 
i = 1 

As in Ioannides and Overman (2003) for MAs, 
we find that at the boundaries the variance of 
growth rates of cities is dependent on size.29 In 
particular, for very small cities with population 
size around 10 inhabitants (with In size between 
2 and 3) and for very large cities, the variation 
in growth rates is markedly different, as re- 
ported in the IQR calculations above. Figure 7 
plots the estimated variance30 (bandwidth 0.5) 

28 
Though this is not the case for the standard deviation. 

29 See also Hardle (1990) for a discussion on the reli- 
ability of the estimates at the tails of the distribution where 
the density takes on very small values. 

30Observe in Figure 7 that the variance of the full 
sample is equal to one. This is due to the fact that we 
calculate the variance of normalized growth rates. 

for 95 percent of the cities in the sample, i.e., 
excluding the top and bottom 2.5 percent. This 
corresponds to all cities larger than 65 (ln is 4.1) 
and smaller than 56,000 (ln is 10.9). We find 
that some outliers have an enormous impact on 
the variance. For example, Eagle Mountain, 
Utah, the fastest growing city in the sample, has 
grown at a rate of 7,090 percent. These outliers 
alone cause spikes in the variance, which can be 
seen from observation of the dotted line, repre- 
senting the kernel estimate of the variance for 
all observations (for example, around In size 
equal to 7; observe also that given the band- 
width of 0.5, the effect of the outliers is con- 
strained to a distance of 0.5). The solid line 
represents the kernel estimate of the variance 
for all observations excluding 9 outliers (obser- 
vations have been dropped with growth rates 
above 1,000 percent). Without the outliers, the 
variance is remarkably stable across different 
sizes of cities. 

Consider now the parametric growth re- 
gressions. For the entire size distribution, no 
significant effect of the size of a city is found 
on the growth, as confirmed by the following 
regression: 

500 S90 +- S0 
= 1.102 - 3.75E(-08) 2 

S90 2 

(0.005) (7E(-08)) 

(n = 19361), where SooS90, the ratio of the 
population size in 2000 and 1990, is the gross 
growth rate of the population, and Sg9 + Soo2 
is the average of the 1990 and 2000 populations. 
The coefficient on size is clearly insignificant 
(standard errors in parentheses). Note that the 
intercept-a net rate of 10.2 percent-is the 
country-wide growth for the entire sample pop- 
ulation between 1990 and 2000 and corresponds 
to an annual population growth rate of (1 + 
ga)1? = 1.103 or ga = 1 percent. The lack of 
significance of city growth on size is further 
confirmed when the dependent variable is the 
population size in 1990: 

S= 1.103 + 2.3E(-09)S90 
S90 

(0.005) (7.3E(-08)) 

(n = 19361). Finally, also when using loga- 
rithm of gross growth between 2000 and 1990 
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II. Zipf's Law 
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as the dependent variable, the coefficient on size 
in 1990 remains insignificant. In the latter re- 
gression, the p-value is 7 percent. When re- 
gressing In of the ratio of population sizes on In 
average size, the coefficient comes out signifi- 
cant and positive: 0.0223 (0.001) and with a 
negative intercept -0.104 (0.007). As can be 
deduced from Figures 5, 6, and 7, this seems to 
indicate that the size dependence of growth 
rates at the very bottom of the distribution af- 
fects the nonparametric estimate. 

In summary, all these results seem to provide 
support for the fact that city growth is indepen- 
dent of population size. Some caution is due, 
however. Growth rates could be calculated only 
for a sample of 19,361 cities, i.e., those cities 
for which there is an observation in 1990, and 
those observations exclude all CDPs. The log- 
normal distribution in Figure 2 was derived 
from the size distribution of 25,359 cities in 
2000, i.e., a distribution with an additional 31 
percent observations. This unfortunate limita- 
tion of the data does not permit us to make any 
definite statement about growth over the entire 
distribution, most likely until the Census 2010 
data become available. If the size distribution of 
CDPs in the 2000 data can provide any indica- 
tion (the distribution of CDPs is close to the 
distribution of all cities), one may expect the 
CDP distribution of growth rates not to differ 
too much from the rest of the cities.31 

31 It is worth noting that even if growth is shown not to 
be exactly proportionate, the limit distribution can still be 
the lognormal. Michael Kalecki (1945) generalizes Gibrat's 
law for growth processes that are not exactly proportionate. 

The question remains: what is the relation 
between Zipf's law for the truncated distribu- 
tion and the nontruncated lognormal distribu- 
tion? As argued in the introduction, the entire 
size distribution cannot possibly fit the Pareto 
distribution. In what follows, the aim is to es- 
tablish Zipf's law for the truncated distribution. 
It will be shown that the estimated coefficient 
on the Pareto distribution is systematically sen- 
sitive to the choice of the truncation point. This 
will be confirmed to be consistent with the fact 
that the underlying distribution is lognormal. 

In the literature on Zipf's law, the truncation 
point has repeatedly been chosen around 135 
cities,32 i.e., the 135 largest cities out of the total 
25,359 cities are included in the census sample. 
This implies that 99.5 percent of the sample of 
cities is dropped, and only the upper 0.5 per- 
centile of the size distribution is considered (this 
corresponds to 30.2 percent of the population in 
the sample, and 22.4 percent of the U.S. pop- 
ulation).33 It is well known from the litera- 
ture that the upper tail of the distribution of 
cities fits the Pareto distribution extremely well. 
The objective of this section is to investigate 
how the estimated coefficient of the Pareto 
distribution changes as the truncation point 
changes. Consider therefore the following anal- 
ysis of Zipfs law. 

Zipf's law for cities states that the population 
size of cities fits a power law with exponent 
approximately equal to one: the population size 
of a city is inversely proportional to the rank of 
the size of the city. The law has been shown to 
hold for different definitions of cities, including 
both places and MAs. A city of rank r in the 
(descending) order of cities has a size S equal to 
1/r times the size of the largest city in that 
country. For U.S. cities, the size S of Los An- 
geles, the second largest, should be /2 the size 
of New York. The tenth-ranked city, Detroit, 
should have a size /lio of New York. Above in 

32 The 135th largest city in the Census 2000 sample is 
Chattanooga, Tennessee, with a population of 155,554. 

33 It is of interest to provide some further descriptive 
statistics of the distribution of cities relative to the sample 
population of 208 million. Half the sample population lives 
in the largest 647 cities, three quarters in the largest 2,678 
cities, 95 percent in the largest 10,255 cities, and 99 percent 
in the largest 17,425 cities. 
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Tables 1 and 2, S/SNy - r is reported for the ten 
largest cities and MAs respectively. The impli- 
cation of Zipf's law is that when the population 
size is plotted against their rank on a logarith- 
mic scale, an approximately straight line is 
obtained. 

To see that a distribution that satisfies Zipf's 
law is the Pareto distribution, consider a vari- 
able S, distributed according to the Pareto dis- 
tribution. Then the density function p(S) and the 
cumulative density function P(S) satisfy 

aSa 
p(S) = Sa-+ 

P(S) = 1 - , 

VS > S 
FIGURE 9. CITY SIZE DISTRIBUTION AND LINEAR 

REGRESSION LINE 

VS > S 

where a is a positive coefficient. Strictly speak- 
ing, Zipf's law satisfies Pareto with a = 1. Note 
that the rank in the empirically observed distri- 
bution is given by 

r = N (1 -P(S)) 

/S a 

s\ 

where N is the number of cities above the trun- 
cation point. Taking natural logs, we get that 
rank is inversely proportional to size 

In r = K - a In S 

where K = In N + a In S is a constant. 
Typically, Zipf's law is verified by regressing 

In r on In S. For the upper truncated city size 
distribution, the regression gives a highly sig- 
nificant estimate of a equal to 1.354: 

In r = 21.099 - 1.354 In S 

(0.144) (0.011) 

(N = 135, S = 155, 554, R2 = 0.991). In Figure 
9, a scatter plot is presented of In r against In S 
and, in addition, the linear regression line esti- 
mated above is plotted. This plot can be inter- 
preted as a transformation of the cumulative 
density function, where on the Y-axis we have 
the natural logarithm of the survival function 
(1 - P(S)) multiplied by N. 

Before considering the sensitivity of the es- 
timated Pareto coefficient to the truncation in 
the size distribution of cities, consider the size 
distribution of MAs. Performing the same re- 
gression on the truncated distribution of MAs, 
where the MA at the truncation point is Erie, 
Pennsylvania, with a population of 280,843, we 
get 

In r = 17.568 - 0.999 In S 
(0.147) (0.011) 

(N = 135, S = 280,843, R2 = 0.985). Observe 
that for MAs, the estimated coefficient a is 
nearly exactly equal to 1, as originally described 
by Zipf (1949). Unfortunately, the fact that a is 
equal to 1 is highly sensitive to the choice of the 
truncation point in either direction: for N = 276 
(the entire MA sample and roughly double the 
original), a = 0.850, and for N = 67 (half the 
original sample), a = 1.114). Figure 10 reports 
a scatter plot of the MA size distribution and the 
regression lines for the different sample sizes. 
At the truncation point of N = 135, the sam- 
ple ensures a perfect fit with Zipf's original 
observation.34 

34 A referee pointed out that the pervasiveness in the 
literature of the truncation point at N = 135 and the result- 
ing estimate of a power coefficient exactly equal to 1, as 
predicted by Zipfs law, is due to a remarkable historical 
coincidence. The literature, starting with Krugman (1996), 
used the Statistical Abstract of the United States, which 
shows only the data for the top 135 cities. 
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FIGURE 10. MA SIZE DISTRIBUTION AND LINEAR 
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The estimated coefficient on the Pareto dis- 
tribution is clearly sensitive to the choice of the 
truncation point. Moreover, the dependence of 
the estimate is systematic: the lower the trunca- 
tion point (i.e., the larger the sample size), the 
lower the estimated coefficient of the Pareto 
distribution.35 The same is expected to be true 
for the size distribution of cities. In what fol- 
lows, it is shown that a theoretical justification 
for the fact that the estimated Pareto coefficient 
is increasing for an increasing truncation point 
is given by the fact that the underlying sample is 
distributed lognormal. 

Consider the lognormal density function 4(') 
as given in equation (1). To simplify notation, 
let x = In S, and denote the normal cumulative 
density function by 4>(x). Now consider the 
truncated lognormal distribution at truncation 
point x = In S. Then the cdf of the truncated 
lognormal is 

((x) - 1(x) 
1 - I)(x) 

As before, let N be the sample size of the 
truncated distribution. Then the rank can be 
written as 

35 While the analysis below for cities as opposed to MAs 
may be suggestive for the relation between the estimated 
Pareto coefficient and the truncation point, other expla- 
nations have been suggested in the literature. In particu- 
lar, see the review on MAs by Gabaix and Ioannides 
(2003). 

or 

N 
(2) lnr=ln = + ln( l- ((x)). 

If the underlying true distribution is the log- 
normal, then from the last equation, the relation 
between In r and In S will not be linear. As a 
result, the hypothesis that size is everywhere 
inversely proportional to rank (Zipf's law) is not 
correct. In particular, ln(l - 4 (x)) is not linear 
in x = In S. Calculating the derivative of the 
term that depends on x in equation (2) gives 

d O4(x) 
dx ln(l- 4(x)) = -- (x) 

= -h(x) 

which is the negative of the hazard rate. It is 
easily verified that the hazard rate for the cor- 
responding lognormal distribution with sample 
mean and variance ji = 7.28, & = 1.75 is 
strictly increasing over the entire domain (and 
positive by definition). The plot of the hazard 
function h(x; 2, 6) is given in Figure 11. 

A strictly increasing hazard rate implies that 
the second derivative of the term ln(l - (I(x)) 
is strictly concave, i.e., d2/dx21n(1 - ((x)) = 

-h'(x) < 0. Now, given a decreasing, strictly 
concave function in x, the linear estimate of this 
function will systematically depend on the trun- 
cation point: the higher the truncation city size, 
the higher the estimate of the linear regression. 
Because an increase in the truncation size im- 
plies a decrease in the truncated sample popu- 
lation, the estimate will be decreasing as the 
sample population increases. This establishes 
the following proposition: 

PROPOSITION 1: If the underlying distribu- 
tion is the lognormal distribution ~((x; /I, 6r), 
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then the estimate of the parameter a of the 
Pareto distribution is increasing in the trunca- 
tion city size (ddldS) > 0 and decreasing in the 
truncated sample population (daldN) < 0. 

Given this theoretical prediction, Table 3 is 
consistent with the fact that the underlying em- 
pirical distribution function of city sizes (as 
established in the former section) is indeed log- 
normal. Estimated parameters are reported for 
the regression 

In r = - a In S, N, S. 

Not only are the estimates of a highly sensitive 
to the choice of the truncation point, they are so 
in a systematic fashion, consistent with the fact 
that the underlying distribution is lognormal. 
For increasing S (decreasing N), a is systemat- 
ically increasing.36 

Finally, Figure 12 provides a plot of the data 
for the entire size distribution (ln r against In S), 
and the regression lines as obtained from the 
linear regressions reported in Table 3. 

III. A Theory of Local Externalities 

The empirical analysis above supports the 
hypothesis that the underlying mechanism that 
governs the evolution of the size distribution of 

36 The GI s.e. is the Gabaix-Ioannides (2003) corrected 
standard error. They show that the nominal OLS s.e. under- 
estimates the true standard error due to the positive corre- 
lations between residuals caused by the ranking procedure. 

cities satisfies Gibrat's proposition. Growth 
rates of cities are observed to be proportionate 
to city size, and the limiting size distribution is 
lognormal. From an economics viewpoint, the 
question remains how economic forces can lead 
to such population dynamics. While there may 
be many idiosyncratic reasons why individuals 
decide to live in one city over another, or 
choose to move between cities, it is hard to deny 
that economic forces are a major determinant in 
population mobility. Cities like Detroit and 
Philadelphia have seen a significant drop in 
population, while at the same time experiencing 
a serious decline in their manufacturing indus- 
tries. In Silicon Valley on the contrary, cities 
have seen higher-than-average population growth 
rates over the 1990s (and often equally lower- 
than-average rates since 2000). Cupertino City, 
home to technology companies like Apple and 
HP, saw a population growth rate of 25 percent 
between 1990 and 2000, two and a half times 
the national average. There is no doubt that 
the economic impact of the technology boom 
in those cities has contributed to attracting 
citizens. 

We therefore propose a general equilibrium 
theory that incorporates those differences in 
technological change across cities. In addition, 
the main reason for the existence of cities and 
the determination of population boundaries is 
the presence of local externalities within cities. 
Firms and workers locate in cities because there 
are positive spillovers in production from 
workers,37 consumers, suppliers, and even com- 
petitors. Without those external benefits, firms 
would locate in rural areas where property 
prices are much lower. At the same time though, 
land and space are in limited supply. All firms 
and workers ideally want to locate as closely 
together as possible, but that tendency is slowed 
by a counteracting force. Not only does a higher 
population lead to higher property prices (which 
has been experienced extensively in cities 
like Cupertino), the presence of more inhabit- 
ants causes congestion. There is a negative ex- 
ternal cost due to increased commuting time. 

They derive that for large N, the approximate true standard 
error is d(2/N)12. 

37 Guy Dumais et al. (1997) provide evidence that shar- 
ing a common pool of workers is the main reason why 
industries locate together. 
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TABLE 3-PARETO COEFFICIENT REGRESSIONS 

Truncation point Estimates 

N S City K (s.e.) a (s.e.) (GI s.e.) R2 

135 155,554 Chattanooga (city), TN 21.099 1.354 0.99 
(0.144) (0.011) (0.165) 

2,000 19,383 Lyndhurst (CDP), NJ 20.648 1.314 0.997 
(0.017) (0.002) (0.042) 

5,000 6,592 Attalla (city), AL 18.588 1.125 0.985 
(0.019) (0.002) (0.023) 

12,500 1,378 Fullerton (city), NE 15.944 0.863 0.961 
(0.014) (0.002) (0.011) 

25,000 42 Paoli (town), CO 13.029 0.534 0.860 
(0.010) (0.001) (0.005) 

Notes: Dependent variable: Rank (In). s.e. standard error; GI s.e. Gabaix-Ioannides (2003) 
corrected standard error (i(2/N)l/2). 
Source: Census Bureau, 2000. 
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Citizens in large cities must devote part of their 
leisure time to nonproductive but work-related 
commuting. 

The model, like Lucas and Rossi-Hansberg's 
(2002) theory of the internal structure of cities, 
incorporates those two counteracting external 
forces. The current model does not explicitly 
model internal geographic heterogeneity of the 
city. Because in Lucas and Rossi-Hansberg 
(2002) citizens obtain the same utility over dif- 
ferent locations, it is without loss of generality 
that citizens within a given city are considered 
identical. The main objective is to understand 
economic and population differences between 
cities, rather than within cities. The city is there- 
fore not considered in isolation, but rather ex- 
periences population mobility from and to 
different cities. The main aim is to extend the 
work in this literature on the internal structure 

of cities and allow for competition between 
cities of different sizes. The space in which 
heterogeneous cities are considered is therefore 
the size space rather than a given geographical 
space. 

Define an economy with local externalities C. 
Time is discrete and indexed by t. Let there be 
a set of locations (cities) i E J = {1,..., J}. 
Each city has a continuum population of size 
Si,, and the total, country-wide population size 
S = I_ Si,t. All individuals are infinitely lived 
and can perform exactly one job. Let Ai, be the 
productivity parameter that reflects the techno- 
logical advancement of city i at time t. The law 
of motion of Ai,t is Ai,t = 

Ai,t_ (1 + o(Ti,). Each 

city experiences an exogenous technology 
shock o,t. Let oa denote the vector of shocks of 
all cities. The city-specific shock is symmetric 
and is identically and independently distributed 
with mean zero, and 1 + S0it > 0.38 On ag- 
gregate, there is no growth in productivity.39 

38 This law of motion implies that ln(Ai,) follows a unit 
root process. In empirical applications, the presence of a 
unit root often cannot be rejected. In the real business cycle 
literature, for example, using the Solow residual to measure 
TFP, the point estimates found on the persistence parameter 
p in Ait = (Ai,t_)P(1 + (i,t) cannot be rejected to be 
different from 1 (see, for example, Robert G. King and 
Sergio T. Rebelo, 1999). 

39 Recent work by Rossi-Hansberg and Wright (2004) 
and Gilles Duranton (2002) has proposed different growth 
models that can explain Zipf's law. Rossi-Hansberg and 
Wright (2004), for example, have shocks at the industry 
level. The implication is that while industry size is persistent 
over time, the size of a given city is not related to that of 
industries, as industries and workers can relocate each pe- 
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Firms are identical, consist of one worker, 
and are infinitesimally small. The marginal 
product yi, of a worker is composed of the city's 
productivity parameter and the positive local 
externality a+(Si,t) from being in a city of size 

Si,t: 

Yit = Ai,a+ (Si,t) 

where a+(Si,) > 0 is the positive external ef- 
fect. It is increasing in Si,t which reflects the fact 
that larger cities generate bigger externalities in 
production. The city's labor market is consid- 
ered perfectly competitive. Identical firms com- 
pete for labor of a representative worker, so the 
wage rate wi,t received by a worker is equal to 
the marginal product Yi,t. As a result of the fact 
that larger cities have a higher marginal prod- 
uct, they also have higher wages. 

Workers are endowed with one unit of lei- 
sure, which can be employed as labor. Denote 
li,t E [0, 1] as the amount of labor employed, 
and 1 - li, as the amount of leisure. Unfortu- 
nately, not all labor employed is productive. 
Because of the negative commuting externality, 
out of the total amount of labor employed, a 
fraction needs to be devoted to commuting. As 
a result, productive labor Li,t = a_(Sit)li,t, 
where a_(Si,) E [0, 1] denotes the negative 
external effect and a'_(Si,t) < O. The larger the 
population, the lower the fraction of time that 
remains to be devoted to productive labor. 

The amount of land in a city is fixed and 
denoted by H. Land is a scarce resource, and it 
is assumed that the total stock of land available 
is for residential use. The price of land is given 
by Pi,t. An individual citizen's consumption of 
land is denoted by hi,t. 

Citizens have preferences over consumption 
ci,t, the amount of land (or housing) hit, and the 
amount of leisure 1 - lit. The representative 
consumer's preferences in city i at period t are 
represented by 

U(Ci,t, hi,t, li,t) = Ca,,ht(l 
- li,t)l 

are perfectly mobile, so they can relocate to 
another city instantaneously and at no cost.40 
After observing the realization of the vector of 
technology shocks at in each period t, citizens 
choose location i to maximize the discounted 
stream of utilities. Because all citizens are iden- 
tical, each of them should obtain the same util- 
ity level. Moreover, because there is no 
aggregate uncertainty over different locations, 
and because capital markets are perfect, the 
location decision in each period depends only 
on the current period utility. The problem is 
therefore a static problem of maximizing cur- 
rent utility for a given population distribution, 
and the population distribution must be such 
that in all cities, the population Sit equates 
utilities across cities. In what follows, given a 
population size Sit in city i, agents choose con- 
sumption bundles {ci>,, hi,, li,t} in a Walrasian 

economy with local externalities. The "popula- 
tion market" clears if all Si imply that the equi- 
librium utilities are the same across cities. 

Given Si, any individual maximizes utility 
u(c,t, hit, li,t) subject to the budget constraint 
(where the tradeable consumption good is the 
numeraire, i.e., with price unity) 

max u(ci,, hi,, li,t; Si) = cah,(l - li,)1-a- 
{ci,t ,hi,t ,li,t,} 

s.t. ci, + pi,thi,t wi,ti,t 

where wi,t = Ai,ta+(Si,t) and Li,t = a_(Si,t)li,t. A 
competitive equilibrium allocation for this 
problem satisfies the first-order conditions 
(where A is the Lagrange multiplier) 

aCi,- lh;t(1 - li,t,)-a 
- + A = 0 

cc',h tl- lit) - - + Api,t = 0 

(1 - a-)c',ht( - i,t)-a-3 

+ Awi,a- (Si,) = 0 

which, after substituting for the market clearing 
condition of the housing market (h,Si,t = H) 

where a, 13, a + 3 E (0, 1). Workers and firms 

riod. Their theory therefore also predicts a particular size 
distribution of industries, in addition to that of cities. 

40 In the real world, there are obviously transportation 
and relocation costs. Dumais et al. (1997) find, however, 
that transportation costs have become far less important. 
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and for the budget constraint, give the following 
equilibrium prices 

* Ai,ta+ (Si,t)a (Si,t)Si,t 
Pit= H 

*t = Aita + (Si,t) 

and the equilibrium allocation 

*,= aA,,a+ (Si,,)a (Si,,) 

H= 

Si,t 

I*, = a + p. 

Observe that wages are higher in cities with 
positive productivity shocks (higher Ai,) and 
they are also higher in cities with a larger pop- 
ulation (due to the exterality a+(S,t)). This is 
consistent with the empirical fact that there is an 
urban wage premium (for an overview, see 
Glaeser, 1998). Higher wages are in part offset 
by higher property prices, which in equilibrium 
implies that less hi,t is consumed, and in part by 
the fact that more time must be devoted to 
commuting in larger cities.41 

Perfect mobility implies that upon realization 
of the shocks, citizens must be indifferent 
across different locations.42 As a result, in equi- 
librium, city populations will be such that citi- 
zens will obtain the same equilibrium utility 
U43 

41 The amount of time devoted to productive and non- 
productive labor is the same across city sizes. An argument 
could be made that in larger cities the total labor time is 
larger than in small cities. Unfortunately, our simple model 
with homothetic preferences cannot account for this. A 
more sophisticated model with nonhomothetic preferences, 
or even with heterogeneous agents, may provide a way to 
introduce it. 

42 Interestingly, Gibrat (1931) himself discusses wage 
heterogeneity of a given profession (terrassiers) across dif- 
ferent cities (Saint-Etienne and Lyon) in the presence of 
random shocks. Unlike the perfect mobility economy con- 
sidered here, he assumes the complete absence of mobility 
of workers. 

43 Like in Lucas and Rossi-Hansberg (2001), the location 
choice of an atomless agent does not change market equi- 
librium. For an analysis of the impact of individual location 
choices on market equilibrium, see an interesting model by 
Ellison and Drew Fudenberg (2003). 

u*(Si,,) = *(S,,,) = U 

for all cities i and j and where u*(S,t) = u(c*,, 
h*t, l*t; Sit). This implies that 

Ai,t a+ (Si,t)a _(Si,t)St t/a 

= Aj,t * a+ (Sj,t)a_ (Sj,t)S, t 3/a 

is equal to a constant for all cities. Denote 
A(Si,t) = a+(Si,t)a_(Si,t)Si,/a the net local size 
effect, so Ai,t A(Si,t) is constant. Then provided 
the inverse exists and A-1 is a positive power 
function, we get 

(3) A-l(Ai,t)Si,t =K 

where K is a positive constant. After substitut- 
ing for the law of motion of technology Ai = 

Ai,t_ (1 + ori,), we obtain 

(4) A- (Ai,t_ (1 + ait))Si, = K. 

This expression now helps establish the follow- 
ing result: 

PROPOSITION 2: Let A-1 be a positive 
power function. If A(Si,t) is decreasing, i.e., 
A' < O, then (ex ante identical) cities with 
larger shocks will have larger populations: 
(dSi,t/di,t) > O. 

PROOF: 
Apply the implicit function theorem to equa- 

tion (4), then we get that 

dSi,t [A- ]'()Ai,t- 
dai, A(Ait_ (1 + o,t)) 

Since [A-]'(.) = 1/A'(), dSi,Idri,t is positive 
provided A' < 0. This establishes the proof. 

Consider the following example. Let 
a+(Si,) = Si,, and a_(Si,t) = S-7 then 

A(Si,t) SiI-,y- t/a i't 

= SE) 

where 0 = 0 - y- 1/a. Note that A-(Si,t) = 
Si/O is a positive power function. As a result, we 
write 
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(Ai,t- (1 + ai,,))1/ Si,t = K. 

From Proposition 2, bigger shocks will lead to 
larger cities, provided O < 0, i.e. 0 - y - 
/3/a < 0. Observe that this condition requires 
that the positive knowledge spillover in produc- 
tion not be too large: 0 < y + /3/a. If the 
positive spillover is very large, an equilibrium 
will involve a degenerate distribution of cities 
where all citizens live in the city with the largest 
productivity shock. 

From equation (3), it is immediate that 

(5) Si,t = 1/A- (Ait,)? K 

for all t. Since A ,t = Ai,t_ (1 + ai,t) and pro- 
vided A-1 is a power function, it follows that 
A-(Ai,t) = A-(Ai,t_l) A-l(1 + Si,t) and 
therefore 

Si,t= l/A-'(Ai,t_ ) 1/A-l(1 + oi,t) K 

= 1/A 1(1 + oi,t) Sit - 1 

after substituting equation (5) evaluated at t - 
1. We now redefine 1/A-l(l + o-i) = (1 + i,t) 
to get 

(6) Sit = (1 + i,t) Sit- l. 

The latter equation is exactly what gives rise to 
Gibrat's law provided shocks are small. 

Gibrat's Law of Proportionate Growth.- 
Gibrat (1931) (following the discovery by 
Kapteyn, 1903) establishes the law of propor- 
tionate effect. Consider a stochastic process 
{Si,t} indexed by place i = 1, ..., I and time t = 

0, 1,..., where Sit is the population size of a 
place i at time t. Let i,t be an identically and 
independently distributed random variable44 de- 
noting the growth rate between period t - 1 and 
t for place i. If growth is proportionate, then 

44 Donald R. Davis and David E. Weinstein (2002) pro- 
vide some evidence for persistence in the population shocks, 
in particular when those shocks are extremely big. This was 
the case, for example, in the Japanese cities of Hiroshima 
and Nagasaki after they were destroyed by the atom bomb 
in August 1945. For small variance, i.e., "normal" shocks, 
nonpersistence is justified. 

Si,t - Si,t- 1 = Ei,tSit- 

or 

Si,t = (1 + i,,) Sij,-l 

Rewriting and taking the summation, we get 

TE i,t 
- 

i,t-1 _ 

S i,t- 1 t=l 

T 

L Ei,t 

t=l 

and since for small intervals 

T Si,T 

Si, t - 
SiS= In SiT - ln 

d Si 
t 

In SiT - I Si, t=l si,o siO 

or equivalently between any two periods 

In Si, = In Si,,- + i,t. 

As a result, it follows that In Si,T 
= In Sio + 

i, l + -' + ei,T. From the central limit theorem, 
In SiT is asymptotically normally distributed, 
and hence SiT is asymptotically lognormally 
distributed, provided the shocks are indepen- 
dently distributed and small (thus justifying 
ln(l + Ei,t) Ei,t). In other words, in line with 
Gibrat's proposition, a proportionate stochas- 
tic growth process leads to the lognormal 
distribution. 

As a result, the above establishes the main 

proposition of the theory of local externalities: 

PROPOSITION 3: Let C be an economy with 
local externalities, let A-1 be a positive power 
function, and let A(Si,t) be decreasing. Then city 
size satisfies Gibrat's law: the population 
growth process is proportionate and the asymp- 
totic size distribution is lognormal. 

It is important to note that Gibrat's law will 
still hold for economies with local externalities 
that in addition have economy-wide externali- 
ties. In fact, by introducing a technological pa- 
rameter A, common to all cities, economy-wide 
technological progress can be captured which 
results from external effects. This typically de- 
notes an aggregate measure-most often the 
mean or the max-of the economy-wide tech- 
nological progress. For Gibrat's law to hold, it 
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does need to be satisfied that this country-wide 
technology parameter is independent of city 
size. For the case of the size distribution of 
firms and not of cities, Eeckhout and Jovanovic 
(2002) provide evidence that spillovers across 
firms are dependent on the size of firms. In fact, 
spillovers between firms are larger for smaller 
firms. We do not find such evidence across 
cities. If the true model of the economy is the 
one proposed in this section, then the propor- 
tionate population growth process is consistent 
with the fact that there are no net local spill- 
overs across cities of different sizes. That does 
not, of course, rule out the possibility that there 
are local spillovers between cities of different 
sizes that are geographically close, but the net 
effect over the entire distribution cancels out.45 
Our results provide no evidence in that direc- 
tion. Recent work on MAs by Linda H. Dobkins 
and Ioannides (2001), however, establishes that 
distance from the nearest higher-tier city (i.e., 
the nearest larger city in a higher tier) is not 
significant as a determinant of size and growth. 

Ideally, further analysis of the data should be 
done. In particular, one would like to analyze 
the entire size distribution over time. This 
would provide an exact description of the mo- 
ments of the distribution at different points in 
time which would allow for further verification 
of the underlying statistical process. It would 
answer questions concerning the limit variance, 
whether Gibrat's law satisfies exactly a Geo- 
metric Brownian motion, thus pinning down the 
detailed process that generates a limit log- 
normal size distribution.46 Unfortunately, due 
to the lack of available data covering the entire 
size distribution, those further analyses are not 
possible at this time. 

IV. Concluding Remarks 

In this paper, a simple but robust underlying 
mechanism of population dynamics of all cities 

45 Consider, for example, an economy with many pairs 
of cities, each pair with one large and one small city. If the 
shocks between the large and the small city are correlated, 
but shocks across the many pairs of cities are not, growth 
will still be proportionate. 

46 Kalecki (1945) extends the class of stochastic pro- 
cesses that lead to the lognormal distribution. This is moti- 
vated by his observation that Gibrat's process leads to a 
lognormal distribution with linearly and unbounded increas- 
ing variance. 

in the United States has been uncovered. Cities 
grow proportionately, i.e., at a stochastic rate 
that is independent of city size, and this gives 
rise to a lognormal distribution of cities. This 
property of the stochastic process has been 
known at least since Gibrat (1931). At the same 
time, this result can account for what for over 
half a century has been the benchmark stylized 
fact of economic geography, that the upper tail 
of the city size distribution satisfies Zipf's law. 
It has been shown that the results confirming 
Zipf's law and the corresponding estimates of 
the power coefficient can be obtained even if the 
true underlying distribution is not the Pareto (or 
Zipf) distribution. Estimated power coefficients 
are sensitive to the choice of the truncation 
point and are consistently increasing in the trun- 
cation. Given a lognormal distribution, we have 
proposed a simple resolution of one of the major 
puzzles related to the size distribution of cities 
based on Gibrat's law. 

This breakthrough can be made only now 
because it hinges on the availability of new data 
in Census 2000 for the entire size distribution. 
The change in conclusion following the avail- 
ability of different data does not seem to be an 
isolated occurrence in science. A similar phe- 
nomenon has occurred in material sciences, in 
particular in the measurement of the atmo- 
spheric aerosol size distribution.47 Atmospheric 
aerosols are particles of different components 
floating in the air. When the measurement of 
particles is restricted to those with the largest 
size (often due to the absence of measurement 
technology that can capture the distribution of 
the smaller ones), the resulting observed distri- 
bution is in fact the truncated distribution and is 
often fit to a power law. With the advent of 
advanced measurement technology, however, 
smaller particles and hence the total size distri- 
bution can be measured. Knowledge of the 
entire atmospheric aerosol distribution is impor- 
tant mainly because, for humans, inhalation of 
small aerosol is much more harmful than large. 
The latter get stopped in the nostrils and throat 
and never enter the lungs. For the entire size 
distribution of many aerosol types, the distribu- 

47 I am grateful to Samuel Pessoa for pointing this out. 
See John H. Seinfeld and Spyros N. Pandis (1997), Amin 
Haaf and Rainer Jaenicke (1980) and William Hinds (1982). 
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tion is actually lognormal, or a convolution of 
different lognormals. 

The fact that Gibrat's proposition is estab- 
lished concerning the population mobility of 
cities is a necessary requirement for an empiri- 
cally consistent theory of the underlying eco- 
nomic activity. The second main purpose of this 
paper is to propose and solve an equilibrium 
model of local externalities where wages and 
prices guide citizens in their location decision. 
Consistent with proportionate growth and a log- 
normal size distribution, the model establishes a 
mechanism of local productivity shocks in the 
presence of local externalities and their effect, 
through worker mobility, on the population size 
distribution of cities. 

APPENDIX A: THE SIZE DISTRIBUTION 
OF COUNTIES 

We investigate the size distribution of coun- 
ties. While counties may not necessarily be the 
right geographical unit that an economist is 
interested in, they do have the major advantage 
that the size distribution of counties comprises 
100 percent of the U.S. population, i.e., 281 
million in 2000. According to the Census, coun- 
ties are described as the primary legal divisions 
of most states. For example, voting for most 
elections is organized at the county level. Most 
counties are functioning governmental units, 
whose powers and functions vary from state to 

TABLE A-1-TEN LARGEST COUNTIES IN THE UNITED 
STATES 

Rank City Population S SLA/S 

1 Los Angeles County, CA 9,519,338 1.000 
2 Cook County, IL 5,376,741 1.770 
3 Harris County, TX 3,400,578 2.799 
4 Maricopa County, AZ 3,072,149 3.099 
5 Orange County, CA 2,846,289 3.344 
6 San Diego County, CA 2,813,833 3.383 
7 Kings County, NY 2,465,326 3.861 
8 Miami-Dade County, FL 2,253,362 4.225 
9 Queens County, NY 2,229,379 4.269 

10 Dallas County, TX 2,218,899 4.290 

Note: SI/S denotes the ratio of population size relative to 
Los Angeles. 
Source: Census Bureau, 2000. 
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FIGURE A-1. EMPIRICAL AND THEORETICAL DENSITY 
FUNCTIONS OF ALL COUNTIES 

state. Legal changes to county boundaries or 
names are typically infrequent. 

In 2000, there were 3,141 counties in the 
United States covering the entire population. 
The ten largest are listed in Table A-1. The 

largest, Los Angeles County, California, had 
9.5 million inhabitants and the smallest, Loving 
County, Texas, 67 inhabitants. The sample 
mean (in ln, standard error in brackets) is P = 
10.22 (0.02) and the standard deviation is = 
1.41. 

In Figure A-1 we plot the size distribution, 
together with the normal density 4(fi, (). 

The size empirical density is remarkably simi- 
lar to the normal. There is somewhat more mass 
near the mode, and the distribution may be slightly 
skewed, but the distribution of county size is 
nonetheless surprisingly close to lognormal. 

APPENDIX B: ADDITIONAL STATISTICS 
OF CITY GROWTH 

TABLE B-1-DESCRIPTIVE STATISTICS OF CITY GROWTH 

Range of cities Growth rate (non-normalized) 

N mean stdev IQR (Q3 - Ql) 

All 19,361 0.103 0.729 0.199 

Top 100 100 0.108 0.158 0.154 
Bottom 100 100 -0.127 0.671 0.493 

Plo to P90 15,488 0.106 0.786 0.191 

Source: Census Bureau, 1990-2000. 

VOL. 94 NO. 5 1449 

/ 

This content downloaded from 141.211.4.224 on Thu, 14 May 2015 15:05:42 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


THE AMERICAN ECONOMIC REVIEW 

04 

0(2 

?Tr 
* 

O . , ' 
~~~~~~~~~as~~~~~~~~~~~~~~~~ 

I 2 3 4 5 6i 7 

Decile 

FIGURE B-1. INTERQUARTILE RANGE B- 

REFERENCES 

Auerbach, Felix. "Das Gesetz Der Be 
konzentration." Petermanns Gec 
Mitteilungen, 1913, 49, pp. 73-71 

Blank, Aharon and Solomon, Sorin. "] 
in Cities' Population, Financial A 

Internet Sites (Scaling in Syste 
Variable Number of Components 
A, 2000, 287(1-2), pp. 279-88. 

Champernowne, D. G. "A Model of I 
tribution." Economic Journal, 19c 
pp. 318-475. 

Davis, Donald R. and Weinstein, 
"Bones, Bombs, and Break Poin 
ography of Economic Activity.' 
Economic Review, 2002, 92(5), 
89. 

Dobkins, Linda H. and Ioannides, 
"Spatial Interaction among US Ci 
1990." Regional Science and Urbc 
ics, 2001, 31(6), pp. 701-31. 

Dumais, Guy; Ellison, Glenn and C 
ward L. "Geographic Concentrati 
namic Process." Review of Ecor 
Statistics, 2002, 84(2), pp. 193-2 

Duranton, Gilles. "City Size Distrib 
Consequence of the Growth Proce 
for Economic Performance, LSE 
cussion Papers, 2002. 

Eaton, Jonathan and Eckstein, Z 
and Growth: Theory and Evid 
France and Japan." Regional S5 
Urban Economics, 1997, 27(4-5 
74. 

Eeckhout, Jan and Jovanovic, Boya] 
edge Spillovers and Inequality.' 

Economic Review, 2002, 92(5), pp. 1290- 
307. 

Ellison, Glenn and Fudenberg, Drew. "Knife 
Edge or Plateau: When Do Market Models 
Tip?" National Bureau of Economic Re- 
search, Inc., NBER Working Papers: 9528, 
2003. 

Gabaix, Xavier. "Zipfs Law for Cities: An Ex- 
planation." Quarterly Journal of Economics, 

\i \ \ 1999, 114(3), pp. 739-67. 
8 9 to Gabaix, Xavier and Ioannides, Yannis M. "The 

Evolution of City Size Distributions," in 
J. V. Henderson and J. F. Thisse, eds., Hand- 

YDECILE book of urban and regional economics, 
Vol. 4. Amsterdam: Elsevier Science, North- 
Holland, forthcoming 2003. 

Gibrat, Robert. Les inegalites e'conomiques; ap- 
plications: aux inegalites des richesses, a la 

?volkerungs- concentration des entreprises, aux populations 
)graphische des villes, aux statistiques des families, etc., 
6. d'une loi nouvelle, la loi de l'effet proportion- 
PowerLaws nel. Paris: Librairie du Recueil Sirey, 1931. 
darkets and Glaeser, Edward L. "Are Cities Dying?" Journal 
ims with a of Economic Perspectives, 1998, 12(2), pp. 
;)." Physica 139-60. 

Glaeser, Edward L.; Scheinkman, Jose A. 
Income Dis- and Shleifer, Andrei. "Economic Growth 
53, 63(250), in a Cross-Section of Cities." Journal of 

Monetary Economics, 1995, 36(1), pp. 117- 
, David E. 43. 
ts: The Ge- Haaf, Amin and Jaenicke, Rainer. "Results of 
' American Improved Size Distribution Measurement in 
pp. 1269- the Aitken Range of Atmospheric Aerosols." 

Journal of Aerosol Science, 1980, 11(3), pp. 
Yannis M. 321-30. 

ities: 1900- Hardle, Wolfgang. Applied nonparametric re- 
an Econom- gression. Econometric Society Monographs. 

Cambridge, New York and Melbourne: Cam- 
rlaeser, Ed- bridge University Press, 1990. 
on as a Dy- Henderson, J. Vernon. "The Sizes and Types of 
nomics and Cities." American Economic Review, 1974, 
04. 64(4), pp. 640-56. 
rutions as a Hinds, William C. Aerosol technology. New 
:ss." Centre York: Wiley, 1982. 
, CEP Dis- Ioannides, Yannis M. and Overman, Henry G. 

"Zipfs Law for Cities: An Empirical Exam- 
;vi. "Cities ination." Regional Science and Urban Eco- 
lence from nomics, 2003, 33(2), pp. 127-37. 
cience and Jovanovic, Boyan. "Selection and the Evolution 
i), pp. 443- of Industry." Econometrica, 1982, 50(3), pp. 

649-70. 
n. "Knowl- Kalecki, Michael. "On the Gibrat Distribution." 
' American Econometrica, 1945, 13(2), pp. 161-70. 

1450 DECEMBER 2004 

This content downloaded from 141.211.4.224 on Thu, 14 May 2015 15:05:42 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


EECKHOUT: GIBRAT'S LAW FOR (ALL) CITIES 

Kapteyn, Jacobus C. Skew frequency curves in 
biology and statistics. Astronomical Labora- 
tory, Groningen: Noordhoff, 1903. 

Kesten, Harry. "Random Difference Equations 
as Renewal Theory for Products of Random 
Matrices." Acta Mathematica, 1973, 131, pp. 
207-48. 

King, Robert G. and Rebelo, Sergio T. "Resusci- 
tating Real Business Cycles," in J. B. Taylor 
and M. Woodford, eds., Handbook of macro- 
economics, Volume lB. Handbooks in Eco- 
nomics, Vol. 15. Amsterdam, New York and 
Oxford: Elsevier Science, North-Holland, 
1999, pp. 927-1007. 

Krugman, Paul. Development, geography, and 
economic theory. Cambridge, MA: MIT 
Press, 1995. 

Krugman, Paul. The Self-organizing economy. 
Cambridge: Blackwell, 1996. 

Le Maitre, Alexandre B. La metropolite'e, ou de 
l'e'tablissement des villes capitales, de leur 
utilite' passive & active, de l'union de leurs 
parties & de leur anatomie, de leur com- 
merce. [Publisher: Amsterdam, Ches B. 

Boekhold, Pour J. Van Grop, 1682]: Edi- 
tions d'histoire sociale. Paris: 1973, Vol. 17, 
pp. 192. 

Lucas, Robert E., Jr. and Rossi-Hansberg, Es- 
teban. "The Internal Structure of Cities." 
Econometrica, 2002, 70(4), pp. 1445-76. 

Pareto, Vilfredo. Cours d'e'conomie politique 
[1896]. New Edition, G.-H. Bousquet and 
G. Busino, eds. Geneva: Librairie Droz, 1964. 

Rossi-Hansberg, Esteban and Wright, Mark. "Ur- 
ban Structure and Growth." Unpublished Pa- 
per, 2004. 

Seinfeld, John H. and Pandis, Spyros N. Atmo- 
spheric chemistry and physics: From air pol- 
lution to climate change. New York: John 
Wiley & Sons, 1997. 

Silverman, Bernard W. Density estimation for 
statistics and data analysis. New York: 
Chapman and Hall, 1986. 

Sutton, John. "Gibrat's Legacy." Journal of 
Economic Literature, 1997, 35(1), pp. 40-59. 

Zipf, George K. Human behavior and the prin- 
ciple of least effort. Cambridge, MA: Addison- 
Wesley Press, 1949. 

VOL. 94 NO. 5 1451 

This content downloaded from 141.211.4.224 on Thu, 14 May 2015 15:05:42 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 1429
	p. 1430
	p. 1431
	p. 1432
	p. 1433
	p. 1434
	p. 1435
	p. 1436
	p. 1437
	p. 1438
	p. 1439
	p. 1440
	p. 1441
	p. 1442
	p. 1443
	p. 1444
	p. 1445
	p. 1446
	p. 1447
	p. 1448
	p. 1449
	p. 1450
	p. 1451

	Issue Table of Contents
	American Economic Review, Vol. 94, No. 5, Dec., 2004
	Volume Information [pp.  i - viii]
	Front Matter
	T.N. Srinivasan: Distinguished Fellow 2003
	Bad Beta, Good Beta [pp.  1249 - 1275]
	Does Fund Size Erode Mutual Fund Performance? The Role of Liquidity and Organization [pp.  1276 - 1302]
	The Interest Rate, Learning, and Inventory Investment [pp.  1303 - 1327]
	Markups, Aggregation, and Inventory Adjustment [pp.  1328 - 1353]
	Intergenerational Persistence of Earnings: The Role of Early and College Education [pp.  1354 - 1378]
	Constructing Price Indexes across Space and Time: The Case of the European Union [pp.  1379 - 1410]
	Rationalizing the Penn World Table: True Multilateral Indices for International Comparisons of Real Income [pp.  1411 - 1428]
	Gibrat's Law for (All) Cities [pp.  1429 - 1451]
	An Efficient Ascending-Bid Auction for Multiple Objects [pp.  1452 - 1475]
	A Group Rule: Utilitarian Approach to Voter Turnout: Theory and Evidence [pp.  1476 - 1504]
	When Does Learning in Games Generate Convergence to Nash Equilibria? The Role of Supermodularity in an Experimental Setting [pp.  1505 - 1535]
	Confidence-Enhanced Performance [pp.  1536 - 1557]
	Addiction and Cue-Triggered Decision Processes [pp.  1558 - 1590]
	Capturing Knowledge within and across Firm Boundaries: Evidence from Clinical Development [pp.  1591 - 1612]
	Does School Integration Generate Peer Effects? Evidence from Boston's Metco Program [pp.  1613 - 1634]
	International Protection of Intellectual Property [pp.  1635 - 1653]
	Riding the South Sea Bubble [pp.  1654 - 1668]
	Shorter Papers
	Why Parents Play Favorites: Explanations for Unequal Bequests [pp.  1669 - 1681]
	Partnership Firms, Reputation, and Human Capital [pp.  1682 - 1692]
	The Effect of Health Risk on Housing Values: Evidence from a Cancer Cluster [pp.  1693 - 1704]
	Progressive Taxation and Long-Run Growth [pp.  1705 - 1716]
	Social Comparisons and Pro-Social Behavior: Testing "Conditional Cooperation" in a Field Experiment [pp.  1717 - 1722]

	Back Matter [pp.  ii - xxii]



