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Abstract
Objectives A large body of literature in quantitative criminology finds that the spatio-

temporal clustering of burglary is greater than one would expect from chance alone. This

suggests that such crimes may exhibit a ‘‘boost’’ effect, wherein each burglary increases

the risk to nearby locations for a short period. In this study, we demonstrate that standard

tests for spatio-temporal dependence have difficulty distinguishing between clustering

caused by contagion and that caused by changing relative risks. Therefore, any estimates of

the boost effect drawn from these tests alone will be upwardly biased.

Methods We construct an agent-based model to generate simulated burglary data, and

explore whether the Knox test can reliably distinguish between contagion (one burglary

increases the likelihood of another burglary nearby) and changes in risk (one area gets safer

while another gets more dangerous). Incorporating insights from this exercise, we analyze

a decade of data on burglary events from Washington, DC.

Results We find that (1) absent contagion, exogenous changes in relative risk can be

sufficient to produce statistically significant Knox ratios, (2) if risk is changing over time,

estimated Knox ratios are sensitive to one’s choice of time window, and (3) Knox ratios

estimated from Washington, DC burglary data are sensitive to one’s choice of time win-

dow, suggesting that long-run changes in relative risk are, in part, driving empirical

estimates of burglary’s boost effect.

Conclusions Researchers testing for contagion in empirical time series should take

precautions to distinguish true contagion from exogenous changes in relative risks.

Adjusting the time window of analysis is a useful robustness check, and future studies

should be supplemented with new approaches like agent-based modeling or spatial

econometric methods.
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Introduction

Measuring the extent to which crime exhibits contagion is an important research effort in

quantitative criminology, both for understanding of the determinants of crime and

informing policy to combat it. Recent work (Townsley et al. 2003; Johnson et al. 2007) has

made use of statistical techniques drawn from infectious disease epidemiology to study the

phenomenon, and these studies provide compelling evidence that burglary is highly

clustered in both space and time. This finding was motivated by theory on criminal for-

aging behavior and analyzed using the Knox test (Knox and Bartlett 1964).

In this paper, we discuss the implementation of the Knox test for analyzing data on

crime events, and demonstrate using a computational model of burglary contagion that

such statistical methods are likely to overestimate burglary’s ‘‘boost’’ effect.1 We then use

this insight to analyze a decade of burglary data from Washington, DC, and discuss how

researchers and policymakers can better implement and interpret such analyses.

Numerous empirical studies (Farrell 1995; Townsley et al. 2003) suggest that burglary

victims face a substantial risk of re-victimization, and that nearby homes face increased

risk of ‘‘near-repeat’’ victimization in the weeks following a burglary event. For

researchers, the difficulty lies in determining whether this relationship is causal (Johnson

2008). Are near-repeats the result of unobserved heterogeneity in risk (the ‘‘flag’’

hypothesis) or does one burglary actually increase the risk that nearby homes will be

burgled in the near future (the ‘‘boost’’ hypothesis)?

Such a boost effect could emerge for a number of reasons. According to optimal

foraging theory (Johnson et al. 2009), criminals who commit a burglary gain information

about the vulnerabilities and expected payoffs of other targets in the area, and use this

information to exploit susceptible homes nearby. Indeed, Bowers and Johnson (2004) find

that pairs of burglaries close in space and time are more likely to share a modus operandi

(point of entry, tools used, etc.) than those that are close in space or time alone. Studies of

repeat offenders find that they will often burgle nearby houses within a very short period of

time (Bernasco 2008). Routine activity theory suggests that burglars often select their

targets during the course of legitimate activities (Townsley et al. 2003), so a burglary at

one location reflects an increased likelihood that a burglar is operating nearby.

However, distinguishing between the boost and flag hypotheses empirically poses a

vexing statistical problem. Knox and Bartlett (1964) propose a solution in the context of

infectious disease, which has recently been adopted by criminologists. Let each burglary

event in the data be denoted by a time t and its x- and y-coordinates. The Knox statistic is

the number of ‘‘close’’ pairs of events that occur within T days and D meters, where T and

D are selected by the researcher. To determine whether the number of close pairs is greater

than we would expect if the timing and location of events were independent, the Knox test

permutes the dataset, assigning a random time t to each location. Repeating this process a

large number of times (conventionally 99 or 999) generates a Monte Carlo distribution of

the expected Knox statistic under the assumption of independence. By using the actual data

to construct the null distribution, the Knox test incorporates observed variation in spatial

1 Although we focus in this paper on the Knox Test, our critique applies more generally to any test of
spatio-temporal interaction on individual-level data (e.g. the Mantel test or Jacquez’s k-nearest neighbor
method).
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and temporal clustering into its expected number of close pairs. If the estimated Knox

statistic is greater than a statistically significant proportion of Monte Carlo-generated Knox

statistics, we can reject the null hypothesis that the spatio-temporal clustering in the data

was due to spatial clustering or temporal clustering alone.

Johnson et al. (2007) reviews results from Knox tests of residential burglary in ten

cities, demonstrating that the observed spatio-temporal clustering of burglary could not be

generated by the flag hypothesis alone. This result has been replicated in a number of

different cities (Bowers and Johnson 2005; Grubesic and Mack 2008; Townsley et al.

2003), for different types of crime (Ratcliffe and Rengert 2008; Wells et al. 2012; Youstin

et al. 2011), and for other types of violence, like piracy (Marchione and Johnson 2013) and

insurgency in war zones (Braithwaite and Johnson 2012; Townsley et al. 2008). Several

authors approach the question using agent-based modeling (Johnson 2008; Pitcher and

Johnson 2011), further demonstrating that the results from the statistical test are not

‘‘fooled’’ by unobserved heterogeneity in risk.

There is, however, an important caveat that goes unmentioned in much of this research.

Spatio-temporal clustering in data can be generated by two processes: the boost effect and

exogenous changes in relative risk. The former is a micro-level phenomenon, in which one

offense increases the probability of a repeat or near-repeat offense. The latter is an

aggregate phenomenon, as particular regions become safer over time while others become

more dangerous. The Knox test is a test of spatio-temporal dependence, and a statistically

significant Knox ratio indicates that the number of close pairs exhibited in the data was

unlikely to have been generated by a process in which time and location of events are

independent. However, this does not necessarily imply that the process was driven by

contagion. Schmertmann et al. (2010) note in their study of fertility transition in Brazil that

the Knox test alone cannot distinguish between spatio-temporal clusters that are generated

by contagion and those that are generated by exogenous changes in relative risks. Such

changes in relative risks may be present in crime data as well.

For example, residential burglary tends to occur on weekdays, during the hours when

residents are away from the home at either work or school (Ratcliffe 2001; Weisel 2002).

Meanwhile, non-residential burglary is more likely to occur on nights and weekends, when

employees are away (Ratcliffe 2001). Because there is heterogeneity in residential/work-

place density across cities, this fact alone implies that we should not expect the timing and

location of burglary events to be independent of one another. Even absent a boost effect,

we should observe more close pairs than expected if these relative risks were held constant.

This distinction between the boost effect and exogenous changes in relative risks is

important to recognize, because clustering driven by the latter may be generated by very

different mechanisms and have different implications for policy. In the next section, we

present a computational model to help clear up this distinction, and to provide recom-

mendations for researchers hoping to distinguish between the two.

The Model

In what follows, we construct an agent-based computational model (ABM) similar to that

in (Johnson 2008; Pitcher and Johnson 2011).2 This allows us to control the mechanisms

that generate our simulated burglary data, and to explore the Knox test’s ability to

2 The model is implemented in NetLogo (v 5.2) and analyzed using R. Replication code will be made
available at the first author’s website.
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distinguish among them. First, we use this model to replicate earlier work, demonstrating

that the Knox test can reliably distinguish between data generated with and without a boost

effect. Next, we add exogenous changes in relative risks, showing that this alone can be

sufficient to produce statistically significant Knox ratios. Finally, we demonstrate that, in

the presence of changing relative risks, the estimated Knox ratio is highly sensitive to one’s

choice of time window, a fact underemphasized in the literature.

In the model, ten thousand computational agents, each of which may represent a city

block, are situated on a 100 by 100 lattice. Each time period, agents are burgled with

probability k. To simulate contagion, whenever an agent is burgled, all nearby agents

receive a boost in their probability of burglary, represented by parameter a (unless

otherwise noted, the boost lasts two periods and affects agents up to five lattice spaces

away from the index case). Let Ki be an indicator variable equal to 1 if a nearby agent was

recently burgled and 0 otherwise. Each agent i has a per-period probability of burglary

equal to

Pi ¼ 1� Ki þ aKið Þk

For our first computational experiment, we let k = 0.0005 and vary the size of the boost

effect. The simulation runs for 90 periods, and we compute Knox ratios from 50 simu-

lations for each parameterization (letting T = 2 and D = 5). As is clear from Fig. 1, the

Knox test can reliably distinguish between data generated with a boost effect (a[ 1) and

data not generated with a boost effect (a = 1). However, note that the estimated Knox

ratios do not have a linear relationship with the underlying boost effect (the ratio between

Knox ratio and alpha is not constant), which implies that researchers should take care when

interpreting such ratios. A Knox ratio measures the excess number of close pairs of events,

relative to what we would expect under the assumption of independence, not the excess

risk associated with a nearby crime event (as suggested in Ratcliffe and Rengert 2008;

Wells et al. 2012; Youstin et al. 2011).

Fig. 1 Estimated Knox ratios varying alpha. 3 month time window (permutations = 99, T = 2, D = 5)
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Next, we demonstrate that, absent a boost effect, exogenous changes in relative risk can

yield Knox ratios consistently greater than one. For this experiment, we let k = 0.0001 and

a = 1 (no boost effect). Every thirty periods, agents on a random 20 by 20 subsection of

the lattice are selected to experience an increase in their exogenous risk of burglary. Let b
represent the increased risk that these agents face during the random shocks, such that their

per-period probability of burglary is bk for those thirty periods. Again, the simulation runs

for 90 periods, and we compute Knox ratios from 50 simulations for each parameterization.

Figure 2 demonstrates how the percentage of false positives (Knox ratios with associated

p value\0.05) increases with the magnitude of these changes in relative risk.

As b increases, so does the likelihood of observing a significant Knox ratio (despite the

absence of a boost effect). This is not to imply that such exogenous shifts in crime risk are

the only dynamics driving the Knox ratios in empirical crime data (indeed, this example is

highly stylized). Rather, it is most likely that the boost effect and changing relative risks

co-occur, and this combination of effects produces the observed spatio-temporal clustering.

Given this, it is likely that any estimate of the boost effect using Knox ratios alone will

overstate its true magnitude.

Often, researchers conducting the Knox test will not choose a single set of thresholds,

but will perform multiple Knox tests, varying their definition of a ‘‘close pair’’. In

empirical work, the estimated Knox ratio will typically increase in magnitude and statis-

tical significance as these thresholds get smaller. To demonstrate that changes in relative

risks produce a similar pattern, we repeat the computational experiment, setting b = 30

and varying the time and distance thresholds as shown in Table 1. The Knox table gen-

erated by this mechanism is quite similar to those from empirical patterns of burglary. As

we decrease the thresholds for T and D, the estimated magnitude of the Knox ratio

increases.

One would be mistaken to infer from this table that the strength of contagion is strongest

at 1 day and 2 blocks, and that increased monitoring within that area during that period is

Fig. 2 Percent false positives from ABM, varying b (permutations = 99, T = 2, D = 5)
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likely to deter crime. As constructed, the exogenous boost occurs within a much larger area

(20 by 20 blocks), and out of the 347 simulated burglary events, only 11 pairs were ever

that close to one another!

Finally, the agent-based model demonstrates that, in the presence of changes in relative

risk, the estimated Knox ratio is highly sensitive to the size of the test’s time window (the

amount of data used to compute the Knox ratio). Typically, researchers estimate a single

Knox ratio using the entire data set (often 6–12 months of data at a time). However, in the

presence of changing relative risks this is not an innocuous decision. To demonstrate, we

first hold exogenous risk constant (k = 0.0005) and set the boost effect to a = 2, running

the simulation for 1460 time periods. Figure 3 shows that when relative risks are held

constant, restricting the time window of analysis increases the variance of the Knox ratio

estimates (due to a decreased sample size), but does not affect the mean estimate. In Fig. 4,

we repeat the test, varying the exogenous risk in random subspaces as before (setting

Fig. 3 Estimated Knox ratios from ABM with a = 2, varying the time window (simulated for 1460 days,
permutations = 99, T = 2, D = 5)

Table 1 Knox table: b = 30, k = 0.0001, permutations = 99 (all entries except bottom-right significant at
p\ 0.05)

Distance Time

1 7 14 28 56

2 4.71 3.60 2.84 2.16 1.36

5 3.17 3.05 2.81 2.02 1.30

10 2.70 2.64 2.43 1.81 1.24

20 2.02 1.93 1.79 1.44 1.11

30 1.51 1.43 1.35 1.19 1.02

40 1.26 1.23 1.16 1.09 0.99
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a = 1, k = 0.00025 and b = 20). When relative risks are not held constant, a larger time

window picks up more variation over time, and increases the estimate of the Knox ratio

accordingly. In the next section, we will see that Knox ratios from burglary in Washington,

DC display a similar pattern.

Empirical Analysis

To explore these questions empirically, we use records of burglary in the city of Wash-

ington, DC from 2000 to 2012 (this includes only the first 6 months of data from 2012).

These records include date, approximate time, and coordinates of the victim’s location, and

there are a total of 52,757 unique events. Plotting the coordinates of all burglaries yields

Fig. 5.

Clearly, the risk of burglary clusters in space, corresponding with population density

and topographical features. Additionally, burglary risk clusters by time, following the

seasonal pattern shown in Fig. 6 and the weekly pattern in Fig. 7. Over the course of the

data, the average monthly burglary rate decreased substantially.

However, this aggregate-level analysis obscures changing relative risks at the neigh-

borhood level. Between 2000 and 2012, the burglary risk in the areas northwest of the

Anacostia River decreased, while those areas southeast of the Anacostia River remained

the same or became slightly riskier (Fig. 7). Like the weekend/weekday trends discussed in

the introduction, this long-term change in relative risks was likely driven by exogenous

factors (e.g. gentrification, the late-2000s economic recession, etc.). Therefore, a standard

Knox test on all 12 years of data would yield upwardly biased estimates of the boost effect

for Washington, DC burglary. Restricting the time window of analysis may be a useful

safeguard against such changes in relative risk. As we see in Fig. 1, for instance, a time

Fig. 4 Estimated Knox ratios from ABM with b = 20 (a = 1), varying the time window (simulated for
1460 days, permutations = 99, T = 2, D = 5)
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window as small as 90 days can still reliably distinguish between data generated by a boost

effect and data generated without a boost effect.

Following (Johnson et al. 2007) we define a ‘‘close’’ pair as a pair of burglaries that

occur within 1 week and 200 m of each other, and we conduct several variants of the Knox

test on Washington, DC burglary data using these values. Figure 8 plots the Knox ratios

Fig. 6 Burglaries in Washington, DC by month (2000–2012)

Fig. 5 Locations of burglaries in Washington, DC (2000–2012)
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observed in the DC data as we change the time window of analysis (i.e. splitting the data

into 1, 2, 3, 6, or 12 month intervals and analyzing these one at a time). Only 1/3 of the

Knox ratios observed when the time window is restricted to 1 month were statistically

significant at conventional levels (p\ 0.05). However, every test at the 6 and 12 month

Fig. 8 Neighborhood risk over time. Northwest and southeast of the Anacostia River (circles = NW,
exes = SE)

Fig. 7 Total burglaries in DC by day of the week (2000–2012)
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windows passed this statistical significance threshold. Additionally, the average estimated

Knox ratio increases as the time window increases (from about 1.1 at 1 month to 1.4 at

1 year). If the Knox ratio reflects the magnitude of the boost effect, then we should not

expect to see this pattern. Rather, as the agent-based model suggests, this is a signature of

changing relative risks (Fig. 9).

Conclusion

Given these results, what is the proper way forward? Spatio-temporal clustering is ubiq-

uitous in burglary, and it is clear both from theory and evidence on repeat offenders that

this clustering is driven in part by contagion. Roughly 27 % of burglaries in Washington,

DC between 2000 and 2012 were followed by another burglary within 200 meters and

7 days. Such information about spatio-temporal clustering could be useful for law

enforcement even absent knowledge about the mechanism producing it, and can provide a

tool for deploying law enforcement resources to prevent repeat and near-repeat victim-

ization. However, if our standard tools for detecting spatio-temporal clustering cannot

distinguish between contagion and exogenously-driven changes in relative risks, then

estimating the size of the boost effect, and its implications for policymakers, becomes

much more difficult.

In light of our findings, we have two recommendations for researchers. First, it is clear

that the Knox test can only provide an unbiased test of contagion if there is good reason to

believe that relative risks in the data are constant over time. Because this is a more

plausible assumption over shorter time periods, restricting the window of analysis can be a

useful robustness check, and the results from the agent-based model suggest that the Knox

test can distinguish between data with and without contagion even using time windows as

small as 3 months. Second, researchers should consider augmenting tests for spatio-tem-

poral clustering with additional theoretical/empirical tools. As we demonstrate here, agent-

Fig. 9 Knox ratios from DC burglary data as we vary the window of analysis (T = 7, D = 200)
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based modeling provides a useful tool for matching observed Knox ratios to those simu-

lated with known boost effects (recognizing that such estimates will be sensitive to

parameters like population size and density). Similarly, spatial econometric methods that

control for exogenous changes in relative risks may be appropriate (e.g. Glaeser et al.

1996; Morenoff et al. 2001). However, by necessity such techniques require neighborhood-

level data rather than individual-level data. Contagion across neighborhoods is a phe-

nomenon worth studying, but may reflect a different mechanism than is the focus of

contagion research using the Knox test.
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