
Supplementary Materials for “Stacked Regression and
Poststratification”

Joseph T. Ornstein

November 4, 2019

Appendix A Synthetic Poststratification Proof

The following proof demonstrates that synthetic poststratification and classical MRP pro-

duce identical estimates if the first-stage model is additively-separable. Let ŷ be the vector

of predictions for each type of respondent, and p be the true empirical pmf for each type.

The classical MRP poststratified estimate is the dot-product ŷ · p. MrsP uses the same

vector of predictions ŷ, but uses a synthetic joint probability distribution, where each entry

is the product of marginal probabilities. I will denote this synthetic poststratification vector

as π. Therefore, the poststratified MrsP estimates will be ŷ · π.

Let X1 through Xm be discrete random variables, and the c×m matrix X be a matrix

in which the each row is one of the c possible combinations of values that X1 through

Xm can take. Crucially, we are not assuming that X1 through Xm are independent, so

P (X1 = x1i, ..., Xm = xmk) need not equal P (X1 = x1i)...P (Xm = xmk).

Suppose the model is additively separable, such that ŷ = Xβ̂. The vector of MrsP

predictions for each unit is therefore π′ŷ, where π is the synthetic distribution vector. To

complete the proof, we must show that p′Xβ̂ = π′Xβ̂. Because β is a vector, this is equivalent

to showing that p′X = π′X:

1

p′X =

∑

i ...
∑

k P (X1 = x1i, ..., Xm = xmk)x1i
...∑

i ...
∑

k P (X1 = x1i, ..., Xm = xmk)xmk

=

∑

i P (X1 = x1i)x1i
...∑

k P (Xm = xmk)xmk

=

∑

i ...
∑

k P (X1 = x1i)...P (Xm = xmk)x1i
...∑

i ...
∑

k P (X1 = x1i)...P (Xm = xmk)xmk

 = π′X

This completes the proof. If our underlying first-stage model is additively separable, then

our poststratified estimates will be identical whether we use MrsP or classical MRP.

2

Appendix B First Stage Models

B.1 LASSO

The LASSO (least absolute shrinkage and selection operator) is an approach to regularization

and variable selection for regression analysis first popularized by Tibshirani (1996). Whereas

ordinary least squares estimates parameters by minimizing the sum of squared residuals,

LASSO regression minimizes a penalized sum of squared residuals. This penalty term takes

the form λ
∑
|βj|, which grows larger with the magnitude of the β coefficients. This penalty

“shrinks” the parameter estimates towards zero, ensuring that the resulting model balances

fit and complexity. A more complex model, with many nonzero parameter estimates, might

more accurately predict the training data, but it is more prone to overfitting. The λ term can

be selected through cross-validation, choosing the value that yields the best out-of-sample

predictive error.

As Tibshirani (1996) notes, the LASSO estimate has a Bayesian interpretation as well:

the LASSO estimate is equivalent to estimating parameters through Bayesian regression,

with a prior distribution heavily weighted towards zero. This explains why the LASSO

shrinks many parameter estimates to zero, making the resulting model both less prone to

overfitting and more interpretable.

B.2 Random Forests

The random forest, first introduced by Breiman (2001), is itself an ensemble approach to

classification and regression. Rather than estimating a single model, the procedure constructs

a large collection of models, then aggregates their predictions together. Each component

model is a regression tree, a technique that generates predictions by successively partitioning

the data on the X variables and taking the average outcome of observations at each terminal

3

node.1 To ensure that these trees are not all identical, each tree is trained on a bootstrap

sample of the dataset (thus the “random” in random forest). The forest prediction is then

equal to the mean prediction of the constituent trees. This process is also called “bootstrap

aggregation”, or “bagging”.

When adapting random forest to estimate probabilities for poststratification, we must

make a few adjustments. Random forests tend to perform well at classification of binary

variables, fully growing a large set of trees from bootstrapped samples and predicting the

class based on majority vote. Taking the average prediction from these trees, however, is not

a principled method for estimating probabilities; there is no guarantee that the percentage of

trees predicting a value of 1 is a well-calibrated estimate of the true probability (Olson and

Wyner, 2018). Instead, I use a variant of random forest proposed by Malley et al. (2012).

The probability forest algorithm requires the terminal nodes in each tree to contain a large

number of observations. This ensures that each terminal node produces probability estimate

rather than a binary classification, which can then be averaged across trees. Malley et al.

(2012) recommends setting the minimum node size to 10% of the training set size, but for

the SRP procedure I tune this hyperparameter to minimize cross-validated Log Loss (see

Appendix C for details).

B.3 Gradient Boosting

Like random forests, the gradient boosting method (GBM) is an approach to prediction

using ensembles of trees. Unlike random forest, however, the component trees are not grown

simultaneously, but sequentially. Each successive tree is built with the goal of improving

the overall fit of the ensemble; if there are some observations in the training set that the

current ensemble predicts poorly, then the new tree will be trained to better predict those

1See Montgomery and Olivella (2018) for an excellent introduction to tree models in political science
research. One section discusses using regression trees to improve MRP estimates, an insight that this paper
expands.

4

observations. In practice, this is accomplished by fitting each tree to the negative gradient

of the loss function. An intuitive way to think about this process is that each tree is fit

to the residuals of the previous prediction, rather than the outcomes. See Friedman (2001)

for technical details and Montgomery and Olivella (2018) for more applications on gradient

boosting in political science research.

Unlike random forest, GBM requires careful tuning in order to avoid overfitting. In

particular, there are two hyperparameters that must be chosen in advance by the researcher.

The parameter B governs the maximum number of splits that can be made in each tree.

When B is small, each constituent tree will model less complex interaction effects. The

parameter ν is a “shrinkage” term, which scales the contribution of each new tree to the

overall prediction. If the prediction of tree m is denoted Tm, then the ensemble prediction

after growing the mth tree is fm = f(m− 1) + νTm. Smaller values of ν typically yield better

predictions (because the ensemble learns across a larger set of trees), but it takes longer for

the algorithm to converge. Commonly, researchers will select the values of B and ν through

cross-validation, and select an optimal number of trees at the point where prediction error

on the test set stops improving. This is the tuning procedure that I implement for SRP.

B.4 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is an intuitive nonparametric approach to regression and clas-

sification. For each observation i, KNN predicts an outcome ŷi by taking the k most sim-

ilar observations in the training data (according to some predefined distance metric) and

computing the mean of their observed outcomes. In classical KNN, this is an unweighted

average of the k-nearest neighbors, but a more general approach uses a weighted average,

with weights proportional to inverse distance. For the SRP procedure, I use the weighting

function proposed by (Samworth, 2012).

As with random forests, the researcher need not assume a model of the DGP in order to

5

produce estimates. Instead, KNN requires a more easily-accepted assumption: that similar

people who live in similar places are likely to hold similar opinions.

Another advantage of this approach is that KNN can easily incorporate spatial predic-

tors. For example, if each survey respondent provides their county of residence, then a

prediction using KNN could incorporate the latitude and longitude of that county’s cen-

troid as predictors. Predictions would then be generated by a weighted average of nearest

neighbors in physical space as well as some abstract variable-space. If black respondents in

Tennessee have systematically different opinions than black respondents in Minnesota, then

the KNN prediction would reflect that, without the researcher having to specify a battery

of interaction terms in advance.

Good predictions from KNN depend on selecting a good value for k. Commonly, this

value is selected through cross-validation, searching for the value of k that yields the best

predictions on a held-out test set. For all of the paper’s analyses, I proceed in this fashion,

choosing the value of k that minimizes a loss function (RMSE for continuous dependent

variables, Log Loss for binary dependent variables) in LOOCV.

B.5 Other Methods

There are several other methods that I considered including in the ensemble, but ultimately

chose to omit. One is Bayesian Additive Regression Trees (BART), another tree ensem-

ble technique introduced by Chipman, George and McCulloch (2012). Conceptually, the

approach is very similar to GBM; trees are grown sequentially and fit to residuals from

the existing ensemble. Unlike GBM, however, each tree’s contribution to the ensemble is

weighted by a prior distribution, which is updated using Bayesian MCMC. Although the per-

formance of this approach compares favorably to other tree-based models (Montgomery and

Olivella, 2018), it tends to produce predictions that are highly correlated with predictions

from random forest and gradient boosting. As a result, it does not significantly improve the

6

performance of an ensemble that already includes the other two methods. Because it is the

most computationally-intensive of the three to tune and estimate, I omit BART from the

SRP ensemble.

I also omit two other widely-used machine learning classification techniques – Naive

Bayes (NB) and Support Vector Machines (SVM) – because they tend to produce poorly

calibrated probability estimates without significant modifications (Platt, 1999; Zhang, 2004).

Poststratification of binary outcomes requires the fist-stage model to produce a probability

for each grid cell, so these methods are a poor fit for our purposes here.

7

Appendix C Monte Carlo Technical Summary

The X variables are generated by discretizing each Z variable, according to procedure in

Table 1. Subnational units are assigned using the Z4 variable. The N observations with the

smallest value of Z4 are assigned to Unit 1, the next smallest N observations assigned to

Unit 2, and so on.

Table 1: Assignment procedure for X variables
Z X

Less than 1 SD below mean 1
1 SD below mean to mean 2
Mean to 1 SD above mean 3

More than 1 SD above mean 4

The functions D0 and D1 in the data-generating process are defined as follows, so that

the former is increasing as it approaches (0,0), while the latter is decreasing.

D0
i =
√

2−
√
lat2i + lon2

i

D1
i =

√
lat2i + lon2

i

2

Table 2 lists the parameter values swept in the Monte Carlo. All simulation code will be

made available at the author’s website.

Table 2: List of parameter values used in the Monte Carlo Simulation
Parameter Values Description

ρ {0.2, 0.4, 0.6} Correlation between Z variables
θ {0, 1, 2, 3, 4, 5} Strength of the threeway interaction effect
n {3000, 5000, 10000} Sample size drawn for disaggregation, MRP, and

SRP estimates
N 15000 Observations per unit
M 200 Number of units
σ2 5 Error term variance in DGP

8

Appendix D Software Details and Implementation

All the computations described in this paper were conducted in R. For each machine learning

algorithm, Table 3 lists the software package used, the hyperparameters that were tuned,

and the parameter values used. For any model that requires parameter tuning, I perform

a grid search on all combinations of the parameters listed, selecting the combination that

minimizes RMSE (for continuous dependent variables) or Log Loss (for binary dependent

variables) in a 5-fold cross-validation. For KNN, I use the built-in LOOCV function from

the kknn package to tune k.

Table 3: Machine Learning Techniques, Packages, and Parameter Tuning
Technique Package Parameters Values

LASSO glmnet λ 0.0005 to 0.047
KNN kknn k 20 to 305

Random Forest ranger min.node.size 1 to min(501, n
5
)

Gradient Boosting xgboost max depth {1, 2, 3, 4, 6}
min child weight {1, 3, 5, 7, 9}

subsample 0.8, 1
colsample bytree 0.8, 1

num round Max 10, 000

9

References

Breiman, Leo. 2001. “Random forests.” Machine Learning 45(1):5–32.

Chipman, Hugh A., Edward I. George and Robert E. McCulloch. 2012. “BART: Bayesian

additive regression trees.” Annals of Applied Statistics 6(1):266–298.

Friedman, Jerome H. 2001. “Greedy Function Approximation: A Gradient Boosting Ma-

chine.” The Annals of Statistics 29(5):1189–1232.

Malley, J.D., J. Kruppa, A. Dasgupta, K.G. Malley and A. Ziegler. 2012. “Probability

Machines: Consistent Probability Estimation Using Nonparametric Learning Machines.”

Methods of Information in Medicine 51(1):74–81.

Montgomery, Jacob M and Santiago Olivella. 2018. “Tree-Based Models for Political Science

Data.” American Journal of Political Science 62(3):729–744.

Olson, Matthew and Abraham J Wyner. 2018. “Making Sense of Random Forest Probabili-

ties: A Kernel Perspective.” Working Paper pp. 1–35.

Platt, John C. 1999. “Probabilistic Outputs for Support Vector Machines and Comparisons

to Regularized Likelihood Methods.” Advances in large margin classifiers 10(3):61–74.

Samworth, Richard J. 2012. “Optimal weighted nearest neighbour classifiers.” Annals of

Statistics 40(5):2733–2763.

Tibshirani, Robert. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal of

the Royal Statistical Society, Series B (Methodological) 58(1):267–288.

Zhang, Harry. 2004. “The Optimality of Naive Bayes.” American Association for Artificial

Intelligence 1(2):1–6.

10

	Synthetic Poststratification Proof
	First Stage Models
	LASSO
	Random Forests
	Gradient Boosting
	K-Nearest Neighbors
	Other Methods

	Monte Carlo Technical Summary
	Software Details and Implementation

