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Abstract

Pretrained text embeddings are a fast and scalable method for determining whether two

texts have similar meaning, capturing not only lexical similarity, but semantic similarity as well.

In this paper, I show how to incorporate these measures into a probabilistic record linkage proce-

dure that yields considerable improvements in both precision and recall over existing methods.

The procedure even allows researchers to link datasets across di�erent languages. I validate

the approach with a series of political science applications, and provide open-source statistical

software for researchers to e�ciently implement the proposed method.

Keywords: Probabilistic Record Linkage, Fuzzy String Matching, Embeddings, Large Language
Models, GPT-3, GPT-4, Active Learning, Text-As-Data

1 Introduction

Empirical social scientists frequently need to merge information from multiple datasets prior to

conducting their analyses, but it is only in rare cases that two datasets contain a shared variable

that unambiguously identi�es which records belong to the same entity. In the absence of such

exact matching variables, researchers must perform fuzzy record linkage�linking records based on

some measure of similarity between variables. When working with text data, existing approaches

commonly rely on lexical measures of string similarity (Jaro, 1989). These include �edit distance�

measures (e.g. Jaro-Winkler and Levenshtein distance), string metrics that compare the frequency

distributions of characters (e.g. cosine similarity), and set theoretic measures (e.g. Jaccard simi-

larity), among many others. The most commonly used and cited fuzzy record linkage procedures

in political science employ one or more of these metrics to capture the distance between pairs of

records (Enamorado, Fi�eld and Imai, 2019; Kaufman and Klevs, 2022) .
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Lexical similarity is a powerful tool for record linkage when datasets contain misspellings, typos,

or other irregularities in data entry. But these measures have well-understood shortcomings, partic-

ularly in cases where lexically dissimilar strings can be used represent the same entity. For example,

the name �Patricia� is more lexically similar to �Patrick� than it is to its nickname �Trish�. Many

record linkage problems that political scientists encounter have this property, in which semantically

similar records can be represented by lexically dissimilar strings. Elected o�cials may be referenced

by their legal name in one dataset and their nickname in another. An organization may be listed

under its full name in one dataset and an acronym in another. For scholars of comparative and

international politics, records may even appear in multiple languages. When faced with record

linkage problems like these, a measure that captures not only the lexical similarity between strings,

but their semantic similarity as well, would be highly desirable.

Fortunately, such measures have recently become widely available, thanks to rapid advances in

large language models (LLMs) based on the transformer architecture (Vaswani et al., 2017). These

models encode language using text embeddings, wherein each word is represented by a real-valued

vector of numbers (Rodriguez and Spirling, 2022). Once trained, the distance between these text

embeddings provides a useful measure of semantic similarity: words that are closer together in

embedding space tend to have similar meaning. Formally, if two strings of text are represented by

the vectors a and b, then their cosine similarity a·b
||a||||b|| measures how semantically related they

are�with 0 being completely orthogonal and 1 being identical.

Table 1 provides several examples in which the cosine similarity between text embeddings pro-

vides a better measure of match quality than lexical similarity (see the next section for details

on how these cosine similarities are computed). Consider, for example, the problem of linking an

organization's full name with its acronym (�rst four rows). Lexical measures of string distance will

struggle with this sort of record linkage task, since an organization's acronym may be lexically more

similar to the acronym of another organization than it is to its own full name! By contrast, embed-

ding vectors can encode the fact that AARP stands for American Association of Retired Persons,

by representing those strings as vectors close to one another in space�this is how language models

based on such embeddings (e.g., ChatGPT) �know� the relationship between those two concepts. In

each of the examples in Table 1, the cosine similarity between text embeddings chooses the correct

match, while lexical measures of string similarity do not. Consequently, a record linkage proce-
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dure that incorporates this measure of similarity may signi�cantly outperform procedures that rely

exclusively on lexical similarity.

Table 1: Examples where lexical similarity is a misleading measure of match quality. The �rst row
of each pair is the true match, and the best match according to four string similarity measures is
in bold. In each case, lexical measures select the wrong match, while the cosine similarity between
pretrained text embeddings selects the correct match.

String 1 String 2 Levenshtein Jaro-Winkler Jaccard Embedding

AARP American Association of Retired Persons 0.103 0.517 0.188 0.837

AARP AAA 0.500 0.722 0.333 0.555

USPS US Post O�ce 0.214 0.655 0.250 0.814

USPS UPS 0.750 0.806 1.000 0.753

Mike Kelly George Joseph "Mike" Kelly, Jr. 0.323 0.354 0.421 0.827

Mike Kelly Mark Edward Kelly 0.471 0.757 0.538 0.616

Kit Bond Christopher Samuel Bond 0.304 0.475 0.368 0.605

Kit Bond Katie Britt 0.364 0.627 0.455 0.445

This is not the �rst paper to propose using text embeddings for record linkage. Indeed, there is

by now an extensive literature applying transformer models to what computer scientists call entity

resolution�determining whether two or more entries in a large dataset refer to the same entity

(Zhou et al., 2021; Tang et al., 2022). These models have had signi�cant practical applications

in areas like e-commerce, where merging product records across multiple websites is a challenging

large-scale problem. These approaches have been adapted to social science applications as well, most

notably in the work of Arora and Dell (2023). What distinguishes the current paper from previous

work is that it incorporates embedding similarity into a probabilistic record linkage procedure.

Such procedures are preferable in social science for two main reasons: they do not rely on arbitrary

thresholds to determine whether two records constitute a match, and they allow post-merge analyses

to account for uncertainty introduced during record linkage (Enamorado, Fi�eld and Imai, 2019).

For applications where there may be multiple correct matches for each observation, a method that

can estimate match probabilities will provide a principled approach for determining which records

to merge, and how strongly to weight each observation in a subsequent analysis.

In this paper, I propose a probabilistic record linkage procedure that incorporates pretrained

text embeddings into an active learning algorithm (Enamorado, 2018; Bosley et al., 2022). The

approach, which I call fuzzylink, is a variant of Adaptive Fuzzy String Matching (Kaufman and

Klevs, 2022), an iterative process of �tting a model, labeling uncertain matches, re�ning the model,
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and repeating until the model converges. The labeling step is performed by zero-shot prompts to a

language model, which reduces time and expense compared to hand-labeling (Ornstein, Blasingame

and Truscott, 2025). Across a series of political science applications, I show that this approach

signi�cantly improves both precision and recall over existing approaches, and can even perform some

tasks�like multilingual record linkage�that would be impossible using lexical similarity measures

alone. In this paper I focus on applications with a single fuzzy matching variable (and potentially

multiple exact �blocking� variables), and conclude by discussing how one might extend the procedure

to multiple fuzzy matching variables.

2 The Algorithm

Consider the problem of merging two datasets A and B, with sample sizes nA and nB respectively.

Let X be a matrix of predictors measuring the similarity between each record pair in the set A×B.

The goal of a probabilistic record linkage procedure is to estimate a model f(X) that maps X onto

a match probability for each record pair.

The workhorse model for this class of problem was �rst formalized by Fellegi and Sunter (1969).

The Fellegi-Sunter model is an unsupervised approach to record linkage, because it does not require

the researcher to provided labeled data on the true matching status of record pairs. Instead, the

model estimates match probabilities using unlabeled data, requiring the researcher to pre-specify

a set of discrete thresholds for what level of similarity constitutes a match. One advantage of

this approach is that it can incorporate similarity metrics from many di�erent types of variables,

including strings, numbers, and geographic coordinates. Another key advantage is its computational

e�ciency. The fastLink implementation of the Fellegi-Sunter model by Enamorado, Fi�eld and

Imai (2019) can easily handle merging large-scale administrative datasets with hundreds of millions

of observations.

However, an unsupervised approach can be an inappropriate choice for record linkage problems

with a single fuzzy matching variable�like the applications described in this paper�because with-

out overlapping information from multiple matching variables, the model's accuracy will be quite

sensitive to the researcher's choice of similarity thresholds. In such cases, one will generally prefer

a supervised approach, in which the model learns the mapping between string similarity and match
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probability based on labeled data.

The main practical impediment to a supervised approach is that the total number of record

pairs scales with nA × nB, so it quickly becomes infeasible to label every record pair even in small-

scale applications. The general solution to such problems is active learning (Enamorado, 2018;

Bosley et al., 2022). Rather than exhaustively labeling every pair of records, an active learning

approach identi�es the most informative record pairs with which to train the model�that is to say,

the record pairs for which the model is most uncertain. By iteratively �tting a model, selecting

informative pairs to label, re�tting the model, and repeating until the model converges, one can

train a supervised learner using a relatively small number of observations.

The active learning algorithm described below performs a fuzzy �left join�, identifying every

record in B that matches at least one record in A. It proceeds in six steps.

Step 1: Embedding. Select the string variable that identi�es each record in A and B, and

retrieve text embeddings for each unique string. In the analyses that follow, I use 256-dimensional

pretrained embeddings from OpenAI.1 Wherever possible, the strings representing records should

not be pre-processed by stemming, converting to lowercase, or any other steps that one might take

to reduce complexity in a bag-of-words representation (Grimmer and Stewart, 2013); performance

will generally be improved if we embed text as it is most likely to appear in the training corpus (e.g.

�Coca-Cola� instead of �cocacola�). The output from this step will be two matrices MA and MB,

with dimensions nA × 256 and nB × 256 respectively. Each row of these matrices is an embedding

vector.2

Step 2: Compute Similarity Metrics. For each pair of records in the set A×B, compute the

cosine similarity between their embedding vectors. If the embeddings are normalized to length 1, a

matrix of cosine similarities can be e�ciently computed by taking the product MA(MB)
′. If there

are any variables that must match exactly to link a record fromA to B (�blocking variables�), perform

this step only for pairs of records with exact matches on these variables. Since the computational

1The most up-to-date embedding model o�ered by OpenAI as of February 2025 returns 3,072-dimensional em-
beddings, but one can reduce the dimensionality through �Matryoshka Representation Learning� (Kusupati et al.,
2024), dramatically improving computation speed at little cost to accuracy. The most recent training data for these
embedding models is September 2021, meaning the approach will underperform if successfully linking records requires
knowledge of events that have occurred since that date.

2An alternative approach to computing embedding similarity�called cross-encoders (Lin, 2025)�is to pass string
pairs directly to a transformer model, outputting a similarity score. Although such an approach could improve
accuracy, it would come at the cost of quadratic computational complexity during the embedding step, so I do not
implement it here.
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complexity of this step scales with nA × nB, blocking can signi�cantly improve e�ciency and as

practical matter should be used whenever possible.

Step 3: Label a Training Set. Select a subset of record pairs and assign each pair a binary

label, 1 if the records are a true match and 0 otherwise. For this paper's analyses, I begin with

an initial training set of the 500 record pairs with the highest cosine similarity scores and generate

labels using the following zero-shot prompt to OpenAI's GPT-4o:3

Decide if the following two names refer to the same {record_type}.

{additional_instructions} Think carefully.4 Respond with "Yes" or "No".

Name A: {A}

Name B: {B}

The placeholders {record_type} and {additional_instructions} will vary by application.

The accuracy of LLM labels is often improved by including context-speci�c instructions or examples

(Ornstein, Blasingame and Truscott, 2025), just as a researcher would include a detailed codebook

if this step were conducted by human research assistants or crowd-coders.

Step 4: Fit Supervised Learner. Fit a probabilistic model to map these cosine similarities

onto a match probability. In the analyses that follow, I �t a logistic regression, which has the advan-

tage of being signi�cantly faster at generating predictions for large datasets than other supervised

learners. I include as predictors both embedding similarity and Jaro-Winkler similarity, to capture

both semantic and lexical di�erences between records.5

Step 5: Label Informative Cases. Estimate match probabilities for all record pairs in the set

A×B using the �tted model from Step 4. Select NL record pairs to label using uncertainty sampling,

where selection probability is determined by a Gaussian kernel centered on match probability of

1
2 (Enamorado, 2018).6 Assign labels to these record pairs as in Step 3. Add the new labeled

3In the Supplementary Materials, I replicate the paper's empirical applications using open-source language models
for the embedding and labeling steps. The advantage of open-source models is that their results are fully reproducible,
though this comes at the expense of poorer record linkage accuracy. I discuss this tradeo� more fully in Section 4.

4Bizarre as it may seem, prompts that include phrases like �Think carefully� often yield marginal gains in classi-
�cation accuracy (Battle and Gollapudi, 2024).

5In Section A.1 of the Supplementary Materials, I vary the model speci�cation in Step 4 and show that this choice
yields the best-calibrated probability estimates.

6Formally, selection probability is based on estimated log-odds. I use the kernel N (0, 0.2), which has 95% of its
mass between 40% and 60% match probability.
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observations to the training set and re�t the model as in Step 4. Repeat these steps until a stopping

criterion is met. In this paper's analyses, I label NL = 100 record pairs per active learning iteration,

and stop when none of the estimated probabilities f(X) change by more than 0.01 between iterations.

Step 6: Link Datasets. If the number of labeled record pairs is fewer than a researcher-

speci�ed budget Nmax, continue labeling record pairs from A without an identi�ed match in B. This

will generally improve recall by identifying true matches with low estimated match probabilities.

Return all record pairs and their estimated match probability. Optionally, only return record pairs

with an estimated match probability greater than π, where π is selected to maximize expected F1

score.7

3 Applications

In this section, I describe four applications of the method, testing its performance across a variety

of record linkage tasks common in political science. The �rst application merges the names of over

9,000 candidates for public o�ce with voter �le records from tens of millions of registered voters

in California. The second application replicates an analysis merging misspelled names of US cities

with a dataset of place names from the US Census Bureau. The third application merges the

names of interest groups with ideology scores estimated from campaign contributions. And the �nal

application explores how well the method can perform record linkage across multiple languages,

merging the names of political parties from 32 countries in 30 di�erent languages.

For each application, I evaluate performance by computing both precision and recall, where

precision measures the fraction of identi�ed matches that are correct, and recall measures the

fraction of correct matches that are identi�ed.

Precision =
True Positives

True Positives+ False Positives

Recall =
True Positives

True Positives+ False Negatives

7The F1 score is the harmonic mean of precision and recall, as de�ned in Section 3 3. This step will typically
remove a large number of record pairs to which the model assigns a very low match probability, signi�cantly reducing
the di�culty of post-merge manual validation (Section 4).
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Any method that performs well on both of these metrics is likely to be particularly useful

for researchers. Higher precision increases the quality of matches, reducing measurement error in

subsequent empirical analyses. Higher recall reduces the amount of missing data in the linked

dataset, increasing the statistical power of downstream analyses (Kaufman and Klevs, 2022)�as

well as reducing bias whenever that missingness is non-random.

3.1 Linking Candidates to Voter File Records

Every year, hundreds of thousands of candidates are elected to local public o�ce throughout the

United States. Collecting data on these elections can be a painstaking process (Sumner, Farris and

Holman, 2020; Einstein, Ornstein and Palmer, 2022; de Benedictis-Kessner et al., 2023), because

unlike candidates for state and federal o�ce, there is often very little information recorded about

local candidates except their names. In this application, I merge the names of every candidate

for mayor and city council in the state of California since 2016 with their corresponding records

in the L2 voter �le. There are a total of 9,025 unique candidate names, and roughly 22 million

registered voters in the California voter �le.8 I merge these two datasets using full name as the

fuzzy matching string and exact blocking on last name and city of residence. To make validation

feasible, the author and a research assistant hand-coded matches from three counties�Alameda,

Kern, and Ventura�to estimate precision and recall.

Of the 840 candidates that ran for o�ce in these three counties, fuzzylink identi�ed 770 poten-

tial matches in the voter �le. 154 of these were exact matches, and the research team determined

that 584 of the remaining fuzzy matches were valid, for an estimated precision of 95.8%. In ad-

dition, the research team was able to locate 32 matches in the L2 voter �le that fuzzylink failed

to identify,9 for an estimated recall rate of 95.8%. By comparison, the fastLink approach (Enam-

orado, Fi�eld and Imai, 2019)�which links records based on predetermined cuto�s in Jaro-Winkler

scores10�identi�es only 521 potential matches, with an estimated precision of 93.3% and recall of

63.1%. The dramatically improved recall is largely due to fuzzylink successfully linking a variety

of nicknames from the candidate list with legal names in the voter �le (e.g., �Vinnie� with �Vinton�,

�Chuck� with �Charles�, �Libby� with �Elizabeth�, �Trish� with �Patricia�, �Mel� with �Carmelita�,

8The California Election Data Archive (CEDA) is available at http://www.csus.edu/isr/projects/ceda.html.
9This search was conducted with the aid of local newspaper articles, campaign websites, and obituaries.

10I use the package's default thresholds of 0.88 for a partial match and 0.94 for a full match.
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�Sri� with �Sricharana�, �Teddy� with �Theadora�). There are also a number of cases where candi-

dates go by their middle name (e.g., �Gregory Tod Abbott� listed as �Tod Abbott� on the ballot)

and are correctly paired by the LLM prompt.

It is worth noting, in light of ongoing debates over algorithmic bias in language models (Abid,

Farooqi and Zou, 2021; Grossmann et al., 2023), that a disproportionate share of false positive

matches (26 out of 32) are Asian, Hispanic, or African American names. As with any record linkage

procedure, researchers should take the time to carefully examine a subset of the merged dataset and

ensure that the method is performing as expected. Fortunately, the estimated match probabilities

are well-calibrated (see Appendix Section A.1) and can serve as a useful guide during validation: the

false positives had a median match probability of just 22%, compared to 58% for the true positives.

One could eliminate over half of the false positives in the merged dataset by manually validating

only the 188 least-probable matches.

3.2 Linking Misspelled City Names To US Census Bureau Records

Next, I replicate a record linkage task from Kaufman and Klevs (2022), which allows for a direct

comparison between the two approaches. There are four key di�erences between the fuzzylink

algorithm and the AFSM algorithm proposed by Kaufman and Klevs (2022): (1) the inclusion of

embedding similarity as a predictor of match quality, (2) the use of automated labeling by LLMs

instead of human coders, (3) a logistic regression classi�er instead of random forest, and (4) selecting

record pairs to label through uncertainty sampling. See Appendix A for a detailed ablation analysis,

exploring the e�ect of each of these choices.

The �rst dataset contains information on 661,218 loan recipients from the 2021 Paycheck Pro-

tection Program (PPP) implemented by the US federal government in the wake of the COVID-19

pandemic. This dataset contains each recipient's address, but the city name provided is rarely an

exact match with place names as listed by the US Census Bureau. If a researcher wanted to deter-

mine which US municipalities were receiving funds through this program, it would require linking

7,118 misspelled city names in the PPP records with a place-level dataset of 28,889 incorporated

towns and cities maintained by the Census, blocking by state.

This is another application where methods that rely on lexical similarity alone can fall short,

because many pairs of cities have quite similar names, potentially yielding a large number of false
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positive matches. Replicating the AFSM procedure as described in Kaufman and Klevs (2022)

yields a set of 1,075 city pairs for which the model assigns a match probability greater than 90%.

Of these record pairs, only 705 were con�rmed as true matches by the research team, for an estimated

precision of 66%. Some examples of the 370 false positive matches include Wingdale NY → Walden

NY, Deerpark TX → Parker TX, Maple TX → Palmer TX, Lamont MI → Almont MI, Delair NJ

→ Gar�eld NJ, and Malone WI → Montreal WI.

Adding embedding similarity as a predictor in the AFSM algorithm signi�cantly improves per-

formance, increasing precision to 84% and the number of matches correctly identi�ed to 1,049 (see

Table 2). But despite this improvement, the approach still struggles with more challenging cases,

yielding a number of false positive matches like Saint Augustine FL → Saint Augustine Beach FL,

Preston CT → New Preston CT, and Swanzey NH → West Swanzey NH.

Table 2: Performance metrics for city name merge across three algorithms.
Algorithm True Matches Identi�ed Precision

AFSM 705 65.6%
AFSM with Embeddings 1,049 84.1%

fuzzylink 2,451 98.0%

The fuzzylink algorithm dramatically improves over both these approaches, more than doubling

the number of true matches recalled with near-perfect precision. Key to this performance is the

combination of uncertainty sampling and accurate LLM labeling, so that challenging cases like the

ones mentioned above are identi�ed and correctly labeled by the LLM during the active learning

loop. Not only is precision improved by removing these false positives, but recall is improved by

identifying true matches with low lexical similarity. These include OKC→ Oklahoma City, Olympic

Valley WA→ Squaw Valley WA, and USAF Academy CO→ Air Force Academy CO. The algorithm

also correctly pairs cases where the PPP loan recipient listed a neighborhood rather than a city in

their address, like Astoria NY → Queens NY, Newbury Park CA → Thousand Oaks CA, and Port

Bolivar TX → Bolivar Peninsula TX.

3.3 Linking Amicus Cosigners to Campaign Donations

For the paper's third application, I replicate the record linkage from Abi-Hassan et al. (2023),

who estimate the ideology of interest groups by merging the names of organizations that cosigned
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Supreme Court amicus curiae briefs (Box-Ste�ensmeier, Christenson and Hitt, 2013) with ideal

point estimates (DIME scores) from campaign donations (Bonica, 2014). There are 15,376 orga-

nizations in their dataset and 2.9 million organizations with recorded campaign donations in the

DIME dataset. The scale of these datasets poses a signi�cant practical challenge for computation

and validation�without any blocking variables, linking the full versions of both datasets requires

computing approximately 38 billion pairwise similarity scores. To make manual validation feasible,

I focus here on the 1,388 organizations that cosigned amicus briefs in the year 2012, and to reduce

computational complexity, I also restrict the DIME dataset to organizations with at least eight

distinct campaign contributions. This is both a practical and principled choice, since �donating to

eight or more distinct recipients is [typically] su�cient to recover a reliable ideal point estimate�

(Bonica, 2023).

Through a combination of exact matching and fuzzy string matching, Abi-Hassan et al. (2023)

were able to locate DIME scores for 376 of these 1,388 organizations, approximately 27% of the

total. By comparison, despite restricting its search to only 8% of the DIME dataset, fuzzylink is

able to locate DIME scores for 437 unique organizations. As in the �rst application, this dramat-

ically improved recall is largely the result of correctly identifying alternative names for the same

organization (e.g., �Utah Association for Justice� and the �Utah Trial Lawyers Association�, �Cal-

ifornia Forestry Association' and �CA Forestry Assoc PAC�, �Ojibwe� and �Chippewa� tribes) and

even former names of the same organization (e.g., �Airlines For America� formerly �Air Transport

Association of America�, �California Construction Trucking Association� formerly �California Dump

Truck Owners Association�, �United States Telecom Assocation� formerly �United States Telephone

Assn�, �Paci�Corp� formerly �Paci�c Power & Light�). This improved recall does not appear to

come at the expense of precision: the research team identi�ed only 3 false positives out of 939 pro-

posed matches, for an estimated precision of 99.6%. Note that this estimate considers chapters or

subsidiaries of larger organizations to be true matches (for example, linking �NAIOP� and �NAIOP

New Jersey Chapter�), under the assumption that one can use campaign donations of local chapters

to make inferences about the parent organization's ideology. If one were unwilling to make such an

assumption, those matches could easily be �ltered out post-merge, or one could modify the LLM

prompt in Step 3 to ignore such matches.
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3.4 Linking Political Party Names Across Multiple Languages

For record linkage problems involving multiple languages, lexical similarity measures tend to be a

poor guide to match quality. The strings �LDP� and �Jiy	u Minshut	o�, for example, share no lexical

features at all, but both refer to the same Japanese political party. Pretrained text embeddings,

by comparison, can naturally accommodate this sort of problem by representing text from multiple

languages in the same embedding space. This makes transformer models particularly adept at ma-

chine translation tasks (Vaswani et al., 2017). In this application, I demonstrate that the approach

proposed here can successfully link the names of political parties across 30 languages�though per-

formance is better for some languages than for others.

To test the method, I take the ParlGov dataset of parliamentary elections since 1900 (Döring

and Manow, 2018), splitting it into two datasets as illustrated in Table 3. The �rst dataset contains

each party's name in its native language, the election year, and the number of seats the party won

in parliament that year. The second dataset contains the English translation of the party's name

along with its estimated left-right ideology on a scale from 0 (leftmost) to 10 (rightmost). I include

all parties from non-English speaking countries that won seats in parliament, for a total of 4,972

observations across 32 countries and 663 elections. Because text embeddings may be closer in space

for some language pairs than others11, I perform this record linkage separately for each country,

blocking on election date.

The resulting dataset correctly matches 4,855 name pairs out of 4,972�a recall rate of 97.6%.

There are, however, a large number of false positive matches (453 in total), for an overall precision of

91.5%. As expected, the method's accuracy varies somewhat by language: precision and recall are

lower for countries like Israel (68.9% precision, 87.0% recall) and Japan (79.1% precision and 94.6%

recall) than for Italy (98.3% precision, 99.6% recall) or Portugal (100% precision, 100% recall). See

Appendix Table A4 a complete list of these evaluation metrics by country.

In addition to computing these accuracy metrics, one can evaluate whether the record linkage

procedure allows us to recover downstream quantities of interest. Figure 1 plots the seat-share

weighted ideology of every parliament in the ParlGov dataset (lines) along with each parliament's

11For example, as measured by cosine similarity, the phrase �Social Democratic Party� is much closer to the
Portuguese �Partido Social Democrata� (0.80) than it is to the Icelandic Social Democratic Party �Alþýðu�okkurinn�
(0.44). However, �Alþýðu�okkurinn� is closest to �Social Democratic Party� relative to other Icelandic parties, so the
probabilistic model will perform best if we avoid pooling embedding distances across language pairs.
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Table 3: Multilingual Record Linkage Application: Splitting the Parlgov data into two sets with
4,972 observations each. The �rst dataset contains each party's name in the country's native
language, and the second dataset contains the English name of each political party.

Native Party Names:

country_name election_date party_name seats

Austria 1919-02-16 Sozialdemokratische Partei Österreichs 72
Austria 1919-02-16 Österreichische Volkspartei 69
Austria 1919-02-16 Deutschnationale 8
Austria 1919-02-16 Deutsche Freiheits und Ordnungspartei 5

. . . .

. . . .
Turkey 2023-05-14 Zafer Partisi 0

English Party Names:

country_name election_date party_name left_right

Austria 1919-02-16 Social Democratic Party of Austria 3.7293
Austria 1919-02-16 Austrian People's Party 6.4733
Austria 1919-02-16 German-Nationals 7.4000
Austria 1919-02-16 German Freedom and Order Party 8.8000

. . . .

. . . .
Turkey 2023-05-14 Victory Party 8.8000

estimated ideology following the record linkage (points).12 The correlation between the estimates

and their true values is 0.964, and the estimates are perfectly correlated with the truth in most

countries. Only a few country-years stand out as severely mis-estimated. In Switzerland, the model

incorrectly links the FDP (�Freisinnig-Demokratische Partei der Schweiz�) with both the Liberal

Party of Switzerland and the Radical Democratic Party. These two parties merged in 2009, but

they were separate parties throughout the prior century, which biases our estimates rightwards for

much of the 20th century. In Israel the model incorrectly links the Labor Party (�HaAvoda�) with

the right-wing Likud, and in Turkey the model fails to identify a match for the Social Democratic

Populist Party. In both cases these errors bias the estimates rightward.

In practice, errors like these can be easily corrected by conducting a post-merge manual valida-

tion, focusing on records in A that did not match to a single unique record in B. In this case, it

would require manually checking only 128 proposed matches, roughly 2% of the total.

12For each party in A, estimated ideology is computed as the average ideology of its matches in B, weighted by
match probability.
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Figure 1: Estimated seat-weighted parliamentary ideology following merge (points) plotted over
true values (lines).
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4 Discussion

The approach I propose here has signi�cant advantages over methods that rely on lexical similarity

measures alone. Social scientists often encounter record linkage problems where matching entities

may be lexically dissimilar from one another, whether it's due to alternative names, acronyms, or

even di�erent languages. Under such conditions, the fuzzylink procedure can signi�cantly improve

both precision and recall. And it does so without requiring signi�cant expenditure in time or money.

None of the applications described in the previous section took longer than a few hours to execute

on a personal computer or cost more than $10 in API fees (see Appendix B for a more thorough

cost breakdown).

Despite these advantages, there are several situations in which the proposed approach is likely

to fall short or prove unnecessary. For example, when merging large-scale administrative datasets

with tens or hundreds of millions of records, researchers are likely to prefer the added e�ciency of

an unsupervised approach like fastLink (Enamorado, Fi�eld and Imai, 2019). Particularly when

such datasets contain a large number of identifying �elds, the marginal gains in accuracy from a

supervised approach like fuzzylink are unlikely to be worth the loss of e�ciency. The proposed

approach is also likely to fail when pretrained language models do not encode the relevant world

knowledge necessary to link two records. The embeddings used in this paper, for example, are

trained only on data collected before September 2021, and will therefore struggle to perform any

record linkage task that requires knowledge of events after that date. Post-merge clerical review is

essential to ensure the accuracy of the LLM labels, replacing them with human labels in cases where

they perform poorly. Finally, researchers will �nd this approach unnecessary in applications where

discrepancies between records are due solely to typos or misspellings, in which case embedding

similarity o�ers little predictive advantage over lexical similarity alone.

I have focused in this paper on applications where there is a single fuzzy string matching variable,

but the sorts of record linkage problems faced by social scientists often include many such variables.

Fortunately, the method can be extended in a number of ways. One approach would be to re-express

multiple fuzzy variables as a single string, which can then be represented as an embedding. For

example, a record with {name} and {address} �elds might be represented by the string �My name

is {name} and I live at {address}.� Another approach would be to estimate a match probability
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separately for each variable as I have done here, and then use those match probabilities as inputs

in the Fellegi-Sunter model (Enamorado, Fi�eld and Imai, 2019). Further research is needed to

determine which approach yields better results.

Another limitation of the method as presented is its reliance on proprietary language models.

Because these models are closed-source and operated by for-pro�t entities, they can be deprecated

or modi�ed at any time without the consent of their users. Consequently, the results that fuzzylink

produces�including those presented in this paper�are not fully reproducible. Though a researcher

could replicate the steps I used to generate the results, within a few years it will be impossible to

reproduce them exactly. For this reason, many scholars in our discipline have urged using open-

source language models wherever possible (Spirling, 2023).

Unfortunately, as of writing, it is di�cult to see how the method presented here could be

undertaken using open-source language models. Frankly, the level of accuracy I demonstrate here

would not have been possible even using the previous generation of proprietary language models. In

the Supplementary Materials, I attempt to replicate the paper's empirical applications using one of

the highest performing open-source language models currently available (Mistral 8x22B), as well as

the previous generation of language models released by OpenAI as of early 2023 (GPT-3.5). These

variants signi�cantly underperform the results reported in the previous section, particularly for the

organization matching and multilingual record linkage applications. Given the rapid development

of open-source language models, it is likely that there will be an acceptable open-source solution in

the coming years, but until that time the accuracy gains from proprietary models outweigh their

drawbacks.

When a research method falls short of full computational reproducibility, one must insist that

it meet standards of replicability (procedures are transparently documented so that other scholars

can independently replicate them) and reliability (repeated application of the procedure yields

similar, if not identical, outcomes). Indeed, these are the standards that our discipline applies

to other non-reproducible research methods, like those that rely on human research assistants or

crowd-coders. The fuzzylink software package13 was developed to help researchers implement the

method proposed here in a straightforward and replicable manner, and I hope that it will enable

13Implemented in the R programming language, the package is available at https://github.com/joeornstein/

fuzzylink.
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much useful social science research in the coming years.
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A Ablation Study

The algorithm proposed in the paper di�ers from existing methods on several dimensions, and in

this appendix I show how altering several of those choices a�ects performance. I focus here on �ve

dimensions: (1) the similarity metrics used as predictors, (2) supervised vs. unsupervised learning,

(3) active vs. passive labeling of record pairs, (4) the choice of supervised classi�er, and (5) the

choice of language model for embeddings and labels.

A.1 Similarity Measures

The proposed algorithm uses both embedding similarity and Jaro-Winkler similarity as predictors of

match quality. In this analysis, I explore how using only embedding similarity or only Jaro-Winkler

similarity a�ects performance.

In the main text, I argue that a key advantage of a probabilistic approach to record linkage is that

the estimated match probabilities can be used in downstream statistical analyses as a measure of

con�dence in the match quality. But in order for match probabilities to be useful in this manner, they

must be well calibrated�record pairs that fuzzylink assigns a 90% match probability should be

true matches roughly 90% of the time. To assess calibration, I extract estimated match probabilities

for every within-block pair of records from the �rst and third applications (linking candidates with

voter �le records and the multilingual record linkage application). I exclude record pairs that are

exact matches, and compare the estimated match probabilities with the true rate of matching.

As Figures A1 and A2 illustrate, the estimated match probabilities are strongly correlated with

hand-validated match rates, though they tend to be somewhat undercon�dent relative to perfect

calibration (dashed line). In each �gure, panel (a) plots the performance of the record linkage

using the model speci�cation as described in the main text�a logistic regression using a linear

combination of embedding similarity and Jaro-Winkler similarity as predictors. Panel (b) uses only

embedding similarity as a predictor, and panel (c) uses only Jaro-Winkler distance as a predictor.

Table A.1 reports two measures of calibration for each model variant: Brier Scores and Log

Likelihoods. The Brier score is the mean squared error between a probability estimate and a binary

outcome, ranging from 0 (the model perfectly predicts the outcome) to 1 (the model perfectly

predicts the opposite outcome). Log likelihood measures how likely the observed outcomes are given
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a set of probability estimates; higher values indicate a better �tting model. In both applications,

the model variant that uses both embedding similarity and lexical similarity as predictors yields

match probabilities that are better-calibrated than the other two model variants. Unsurprisingly,

the model variant that only uses Jaro-Winkler similarity as a predictor performs signi�cantly worse

in the multilingual record linkage application (Figure A2).

Table A1: Estimated match probability calibration in two applications, varying model speci�cation.
Application Predictors Brier Score Log Likelihood

Voter File Both 0.159 -560.09
Voter File Embedding Similarity Only 0.158 -676.06
Voter File Lexical Similarity Only 0.167 -762.64

Multilingual Record Linkage Both 0.052 -8230.36
Multilingual Record Linkage Embedding Similarity Only 0.055 -8641.85
Multilingual Record Linkage Lexical Similarity Only 0.074 -11686.87

A.2 Supervision

The algorithm proposed here is a supervised approach to record linkage, in which a model is trained

using labeled data to learn the mapping between similarity metrics and match probability. This is in

contrast to an unsupervised approach, like the Fellegi-Sunter model, which relies on the researcher

pre-specifying thresholds for what level of similarity de�nes a full or partial match. As described in

the main text, supervised approaches sacri�ce some computational e�ciency for greater accuracy,

particularly for applications that involve a single fuzzy identifying �eld.

To illustrate why a supervised approach can yield superior performance in the paper's appli-

cations, Figure A3 plots the estimated mapping between embedding similarity and match quality

across �ve applications: matching candidate names to the voter �le, matching city names, and

translating the names of political parties in Austria, Israel, and Spain. Note that it would be very

di�cult for a researcher to specify ex ante what level of embedding similarity constitutes a full or

partial match, since the best values for thresholds change depending on application. For example,

in the candidate name application, record pairs with embedding similarity greater than 0.892 have a

greater than 75% probability of matching. But in the city names application, this value is 0.927. In

the multilingual application, embedding similarity is systematically di�erent for di�erent language

pairs, so that an appropriate threshold might be 0.815 for Austrian political parties and 0.999 for
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Israeli political parties. These di�culties help explain why a supervised approach that learns the

relationship between embedding similarity and match probability from data can yield signi�cant

performance improvements for these sorts of applications.

A.3 Active vs. Passive Labeling

As Enamorado (2018) notes, the added value of active learning for record linkage is e�ciency�

exhaustively labeling A×B record pairs is often infeasible even for modest sized datasets. Further-

more, the vast majority of record pairs are not informative observations for training a supervised

learner. To illustrate this idea, consider Figure A4, which plots the distribution of embedding simi-

larity and lexical similarity (Jaro-Winkler scores) for every within-block record pair in Application

1 (red are con�rmed matches, and gray are non-matches). As the �gure makes clear, there is a rel-

atively small region in the upper right where the researcher's labeling budget is most productively

spent. Active learning is well-suited to identifying and labeling record pairs in that region.

For comparison, I conducted several ablation analyses in which record pairs from Application 1

were labeled �passively�: selecting a subset at random to label, �tting a logistic regression model

to this training set, and otherwise linking the datasets as described in the main text. Table A.3

reports the estimated performance of these variants. One must label roughly ten times as many

record pairs in this fashion before even approaching levels of precision and recall reported in the

main text.

Table A2: Estimated performance for variants of the model with �passive� rather than active label-
ing.

Method Number of Labels Precision Recall

fuzzylink 3,259 95.8% 95.8%
Passive Labeling (1%) 550 73.8% 74.8%
Passive Labeling (2.5%) 1,375 80.6% 71.2%
Passive Labeling (5%) 2,751 76.2% 75.2%
Passive Labeling (10%) 5,503 83.7% 72%
Passive Labeling (25%) 13,758 83.7% 79.8%
Passive Labeling (50%) 27,516 90.9% 85.6%
Passive Labeling (75%) 41,274 98% 89.5%

22



A.4 Classi�er

The version of the algorithm presented in the main text uses a simple logistic regression model as its

supervised learner, with embedding similarity and Jaro-Winkler similarity as predictors. Perhaps a

more complex learner that incorporated additional measures of lexical similarity would do a better

job estimating match probabilities. To test this, I replicated the �rst application (linking California

candidates to the voter �le) replacing the logistic regression model with a random forest as in

Kaufman and Klevs (2022). In addition to embedding similarity, I include as predictors a suite of

lexical similarity measures, including Jaccard distance, optimal string alignment, q-gram distance,

cosine similarity, longest common substring distance, Jaro-Winkler similarity, and distance based on

soundex encoding. See Kaufman and Klevs (2022) and the stringdist R package documentation

for details on how these measures are computed.

There are two disadvantages to this approach that ultimately led me to prefer the logistic regres-

sion speci�cation. First, random forest requires more labeled observations to �t a well-calibrated

model; replicating the �rst application using random forest required 6,399 labeled record pairs,

roughly twice the number of labels required in the main text. Second, the more complex model

structure takes longer to compute predicted probabilities, which can meaningfully increase run time

for larger-scale problems. For example, in Application 2 (merging city names), there are 5.5 million

within-block pairs of city names; predicting match probabilities for these city pairs with random

forest took 3.5 minutes on my personal computer�compared to 0.36 seconds with logistic regres-

sion. Multiplied over a few dozen active learning iterations, this represents a substantial increase

in compute time for researchers.

This reduction in computational e�ciency might be worthwhile if the random forest variant of

the model yielded more accurate merges, but this does not seem to be the case. Replicating the

�rst application yielded a merged dataset with an estimated precision of 92.8% (compared to 95.8%

in the main text) and recall of 97.3% (compared to 95.8% in the main text). I include the random

forest as a non-default option in the fuzzylink software package.
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A.5 Alternate Language Models

A.5.1 Linking Candidates to Voter File Records

When linking these datasets using labels from GPT-3.5 instead of GPT-4, fuzzylink returns fewer

matches, but with slightly better precision. Out of the 840 candidates that ran for o�ce in the three

California counties, the method identi�ed 566 potential matches in the voter �le. 154 of these were

exact matches, and the research team determined that 411 of the non-exact matches were valid, for

an estimated precision of 99.8%. However, this improved precision comes at the cost of recall. The

research team was able to locate 139 matches in the L2 voter �le that fuzzylink failed to identify,

for an estimated recall rate of 80.3%.

When linking these datasets using labels and embeddings from the open-source Mistral 8x22B

language model (released April 17, 2024), fuzzylink returns far fewer matches, but with improved

precision. Out of the 840 candidates that ran for o�ce in the three California counties, the method

identi�ed 518 potential matches in the voter �le. 154 of these were exact matches, and the research

team determined that 362 of the non-exact matches were valid, for an estimated precision of 99.6%.

However, this improved precision comes at the cost of recall. The research team was able to locate

187 matches in the L2 voter �le that the model failed to identify, for an estimated recall rate of

73.4%.

Linking these datsets using embeddings from the open-source Mistral 8x22B and labels from

OpenAI's GPT-4o, fuzzylink yields similar results as the analysis in the main text using both

labels and embeddings from OpenAI. The algorithm returns 770 potential matches in the voter

�le. 154 of these were exact matches, and the research team determined that 584 of the non-exact

matches were valid, for an estimated precision of 95.8%.The research team was able to locate 25

matches in the L2 voter �le that the model failed to identify, for an estimated recall rate of 96.7%.

A.5.2 Linking Amicus Cosigners to Campaign Donors

When linking these two datasets using labels from GPT-3.5 instead of GPT-4, the method returns

matches for a much larger number of organizations (695 instead of 444), but the precision of these

matches is unacceptably low. In a random sample of 100, only 37% were deemed a valid match by

the research team.
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A.5.3 Linking Party Names Across Languages

When linking these two datasets using labels from GPT-3.5 instead of GPT-4, the method returns

a tremendous number of false positive matches�6,284 in total. As a result, estimated recall is

slightly higher than that reported in the paper (97.1%), but those true positives are swamped by

false positives, for an estimated precision of 43.5%.

When linking these two datasets using labels and embeddings from the open-source Mistral

8x22B language model (released April 17, 2024), fuzzylink returns only 216 false positive matches,

for an estimated precision of 95.2% (roughly as precise as the 95.8% reported in the main text).

Recall, however, is somewhat lower, at 85.7%, and this reduced ability to identify matches yields sig-

ni�cantly worse performance on the ideology estimation task�particularly in countries like Estonia,

Finland, and Iceland�as illustrated in Figures A5 and A6.

25



B Costs

The following table reports the costs for each application in the paper, both in time and API fees.

As described in the main text, blocking signi�cantly improves e�ciency. In the �rst application

there are 773 blocks (determined by last name and place of residence) and the merge completes in

less than 5 minutes. The third application, by comparison, has a similar number of records, but

takes over 6.5 hours to complete because there are no blocking variables, and the algorithm must

consider every possible pairwise comparison (approximately 260 million).

Table A3: Cost breakdown by application
Application nA nB Number of Blocks Time API Fees

1. L2 Voter File 1,019 1,868,345 773 4.2 minutes $1.83
2. PPP Cities 7,118 28,889 52 17 minutes $0.43
3. DIME scores 1,388 221,984 1 6.5 hours $10.05

4. Parlgov 4,972 4,972 32 14 minutes $1.05

C Additional Figures and Tables

Figure A7 illustrates how embedding similarity can, in some applications, be a much better indica-

tor of match quality than measures based on lexical similarity alone. The Receiver Operator Curves

compare how well three similarity metrics predict the matching status of 4,000 hand-labeled pairs

of organization names from Kaufman & Klevs (2022). The �rst (black) is lexical similarity alone

(Jaccard similarity). The second is AFSM scores from Kaufman & Klevs (2022), which combine

multiple lexical similarity metrics (red). The third is cosine similarity from pretrained text embed-

dings (blue). The Area Under the Curve (AUC) is a measure from 0 to 1 capturing how well the

measure balances identifying true positives and eliminating false positives.
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(a) (b)

(c)

Figure A1: Binned calibration plot for voter �le record linkage application, using three di�erent sets
of predictors: (a) both embedding similarity and Jaro-Winkler similarity, (b) embedding similarity
only, and (c) Jaro-Winkler similarity only.
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(a) (b)

(c)

Figure A2: Binned calibration plot for multilingual record linkage application, using three di�erent
sets of predictors: (a) both embedding similarity and Jaro-Winkler similarity, (b) embedding simi-
larity only, and (c) Jaro-Winkler similarity only.
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Figure A3: Learned mappings from embedding similarity to match probability in �ve applications
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Figure A4: Similarity metrics for every within-block record pair in Application 1 (matching candi-
date names to the voter �le). Red dots are con�rmed matches and gray dots are non-matches.
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Figure A5: The actual seat-weighted ideology of each parliament in the ParlGov dataset (x-axis)
plotted against estimated seat-weighted ideology estimated using labels and embeddings from open-
source Mixtral 8x22B model (y-axis). Red points are those with absolute error greater than 1-point.
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Figure A6: Estimated seat-weighted parliamentary ideology following merge (points) plotted over
true values (lines), using labels and embeddings from open-source Mixtral 8x22B model.
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Figure A7: Receiver Operator Curves (ROC) for three fuzzy string similarity metrics on hand-
labeled organization name pairs from Kaufman and Klevs (2022).
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Figure A8: The actual seat-weighted ideology of each parliament in the ParlGov dataset (x-axis)
plotted against estimated seat-weighted ideology following the probabilistic record linkage. Red
points are those with absolute error greater than 1-point.
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Country Precision Recall
1 Austria 99.15 99.15
2 Belgium 93.89 100.00
3 Bulgaria 100.00 94.94
4 Croatia 100.00 98.81
5 Cyprus 94.83 100.00
6 Czech Republic 100.00 100.00
7 Denmark 89.98 100.00
8 Estonia 96.55 100.00
9 Finland 100.00 92.94
10 France 92.47 97.79
11 Germany 92.55 100.00
12 Greece 99.08 98.18
13 Hungary 100.00 100.00
14 Iceland 95.76 100.00
15 Israel 68.95 87.04
16 Italy 98.34 99.58
17 Japan 79.09 94.57
18 Latvia 100.00 98.53
19 Lithuania 97.75 100.00
20 Luxembourg 78.16 97.14
21 Malta 97.96 100.00
22 Netherlands 92.72 97.99
23 Norway 89.21 100.00
24 Poland 96.43 100.00
25 Portugal 100.00 100.00
26 Romania 92.68 97.44
27 Slovakia 100.00 100.00
28 Slovenia 98.94 98.94
29 Spain 92.35 94.94
30 Sweden 95.35 100.00
31 Switzerland 87.63 99.39
32 Turkey 100.00 79.25

Table A4: Precision and Recall for Multilingual Record Linkage Application By Country
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