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Abstract

In applied settings, regression discontinuity (RD) designs often suffer from noisy data

and low power. This tends to produce exaggerated causal effect estimates, typified by

implausibly large slope and/or concavity parameters. We introduce a new method for

estimating causal effects in RD designs called Gaussian Process Regression Discontinu-

ity (GPRD). This approach overcomes the major disadvantages of global polynomial

estimators and does so with lower variance than local linear estimators. When applied

to a large set of empirical examples from the published literature, GPRD yields more

modest and plausible treatment effect estimates. We make this new method available

through the R package gprd.
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1 Introduction

Regression discontinuity (RD) is an approach to causal inference that leverages a discontin-

uous change in treatment at a cutoff. The key identification assumption of the RD design is

the continuity of other pre-treatment covariates; so long as treatment status is the only vari-

able that changes discontinuously at the cutoff, the causal effect of treatment is identifiable

at that point (Hahn, Todd and Van Der Klaauw, 2001). Because such thresholds, cutoffs,

and boundaries are a common feature of political institutions, RD has proven a popular

research design in political science over the past two decades (de la Cuesta and Imai, 2016).

Estimating the average treatment effect at the cutoff requires finding the limits of the

outcome variable as it approaches from the left and right. Traditionally, researchers have

estimated these limits in one of two ways. The first approach is to fit a high-order poly-

nomial regression on either side of the cutoff, then take the difference between the two

regressions’ predictions at the cutoff. This approach suffers from a disadvantage common to

any parametric estimation strategy: if the true data generating process is not captured by

the researcher’s model specification, then any causal effect estimate is likely to be biased.

Gelman and Imbens (2019) catalogue three other disadvantages of this approach: global

methods tend to overfit to observations far away from the cutoff, estimates are sensitive to

the researcher’s choice of polynomial degree, and confidence intervals have poor coverage.

In response to these problems, Calonico, Cattaneo and Titiunik (2014), hereafter CCT,

developed a local linear regression approach to RD estimation that keeps observations within

a bandwidth (h) that minimizes the mean squared error of the RD estimator. Their approach

estimates the limits approaching the cutoff using local linear regression weighted by a trian-

gular kernel and adjusting for a bias-correction term, and the authors derive robust standard

errors for inference. Confidence intervals from this method produce the best empirical cov-

erage of any method proposed to date, and its estimates perform well in a wide array of

simulations.
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Because the CCT estimator relies on a smaller number of observations close to the cutoff,

it reduces bias at the expense of higher variance. As a result, datasets that are sparse or

noisy in the neighborhood of the cutoff can yield estimates that overfit to chance patterns

near the cutoff. As the ongoing replication crisis in experimental sciences has demonstrated,

such low-powered studies are pernicious when combined with a publication bias towards

statistically significant results (Button et al., 2013). The estimated treatment effects from

published low-powered studies tend to significantly overestimate the true treatment effect,

a distortion that Gelman and Carlin (2014) refer to as Type M errors.

To illustrate this problem in the RD case, consider the simulated data in Figure 1,

distributed X ∼ U(−1, 1), Y ∼ N (0, σ) + 1(X > 0)τ , and τ = 0.

Figure 1: Simulated false positive RD estimates from local polynomial approaches. Dashed
vertical lines are the CCT MSE-optimal bandwidth. Solid vertical line is the cutoff. Gray
points are the raw data, and black lines are the local polynomial fits. Left two figures
generated with parameters τ = 0, σ = 1

2
, n = 500. Right two figures generated with

parameters τ = 0, σ = 1, n = 1000.
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Although there is no simulated discontinuity at the cutoff, local polynomial estimators

produce large and statistically significant estimates of τ̂ . When τ = 0, CCT 95% confidence

intervals reject the null hypothesis (H0 : τ = 0) roughly 7% of the time. Of these rejections,

over 90% display a characteristic “zig zag” pattern illustrated in the figure – steep-sloped

regression functions on either side of the cutoff and a treatment effect of the opposite sign.1

This pattern is emblematic of false positive or exaggerated claims from noisy RD data, and

will be present in many of the empirical applications we present below.

When faced with an overfitting problem, the principled remedy is regularization, penal-

izing extreme estimates to guard against overfitting to noisy data. In this paper we suggest

a Bayesian approach to regularized RD estimation first proposed by Branson et al. (2019),

which we call Gaussian Process Regression Discontinuity (GPRD). Because it places a prior

on the smoothness of the conditional expectation function, this method is particularly useful

for moderating the exaggerated claims from low-powered RD studies. In the following two

sections, we introduce GPRD and show that it performs well in simulations, overcoming the

disadvantages of traditional global polynomial approaches while producing lower variance

estimates than local linear approaches. In section 4 we apply GPRD to a large set of pub-

lished RD studies where low power has yielded exaggerated treatment effects. We conclude

with an agenda for future research, and provide open source software for researchers (the R

package gprd).

2 Gaussian Process Regression for RD Designs

In regression discontinuity (RD) designs, we attempt to estimate the causal effect of a treat-

ment that is assigned at a specific value of some running variable, x. We assume the outcomes

y are a noisy function of the running variable x, and we are interested in the discontinuity in

1Or, when estimated using a local quadratic regression, a concave regression function on one side of the
cutoff, and a convex function on the other side.
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f(x) induced by the treatment. We propose using Gaussian process regression (Neal, 1998)

to learn this conditional expectation function f(x) and estimate causal effects in RD designs.

To formalize the RD problem we start by assuming the outcomes are normally distributed,

y ∼ N
(
f (x) , σ2

yI
)
, (1)

where f (x) is an unknown function of the running variable x. A treatment occurs at a

cutoff value c of x; that is, all outcomes where x ≥ c receive the treatment. For simplicity

here we will assume c = 0.

Alternatively, we might assume that the outcomes are normally distributed but with

different mappings between input and output on either side of the cutoff;

y+ ∼ N
(
f+ (x+) , σ2

yI
)
, (2)

y− ∼ N
(
f− (x−) , σ2

yI
)
, (3)

We will propose two different methods to estimate the treatment effect τ of the inter-

vention using Gaussian process (GP) regression. The first, which we call the global GPRD

estimator, fits a single GP model for all observations, with a dummy variable D to indicate

treatment, and estimates the treatment effect using the difference in prediction when x = c

and D = 1 and D = 0. The second, which we call the piecewise GPRD estimator, models

the data separately on either side of the cutoff and estimates the treatment effect using the

difference between predictions at the cutoff from the “right equation” and “left equation.”

2.1 Gaussian Process Regression

GP regression is a method used to learn the mapping from x to y when its functional form is

not known, accomplished by placing a GP prior over the function space. As this methodology
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is uncommon in the political science literature, we provide a brief overview here.

A Gaussian process (GP) is an infinite dimensional generalization of the normal distri-

bution. More specifically, it is “collection of random variables, any finite number of which

have a joint Gaussian distribution” (Rasmussen and Williams, 2006, 13). The mean and

covariance of this normal distribution is given as functions of the inputs, so that we say

f(x) ∼ GP(m(x), K(x)). (4)

Common examples for the mean function are the “mean zero” function m(x) = 0 and

the “linear mean” function m(x) = xβ. A common example of a covariance function (also

called a kernel) is the isometric squared exponential covariance function, aka the radial basis

function,

K (x, x′) = σ2
f exp

(
−0.5

(x− x′)2

`2

)
, (5)

where σf is a hyperparameter called the scale factor, which scales the entire covariance

matrix, and ` is a hyperparameter called the length scale, which influences how quickly f

varies in x. Then the i, j element of the covariance matrix is given by K(xi, xj).

This setup allows us to model distributions over functions rather than simply distribu-

tions over variables. Then, rather than assume we know the form of the mapping between

the input variables X and outcomes y—such as a polynomial of a particular order—we can

instead use a GP to place a probability distribution over all possible mappings from X to

y. With a Gaussian likelihood for the data given X and f(x), a posterior distribution over

f(x) is then given by application of Bayes’ rule utilizing Gaussian identities.2 Crucially

for our purposes, well known results provide the posterior predictive distribution for a test

2For a more detailed derivation of this posterior distribution, see Rasmussen and Williams (2006), Chapter
2.
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observation x∗ as

f(x∗) ∼ N (m∗, C∗) (6)

m∗ = m(x∗) +K(x∗,x)[K(x) + σ2
yI]−1(y −m(x)) (7)

C∗ = K(x∗)−K(x∗,x)[K(x) + σ2
yI]−1K(x, x∗). (8)

Note that Bayesian linear regression is a special case of Gaussian process regression, using

the linear covariance function K(x, x′) = x · x′.3 When using other kernels, we simply allow

non-linearity in the mapping from input to response. In other words, GP regression is a

flexible extension to Bayesian linear regression to account for uncertainty in the functional

form mapping predictors to response by assuming the covariance between outcomes is a

function of the predictor variables. In the case of the common squared exponential covariance

function (and its extension discussed in Section 2.2, the automatic relevance determination

kernel), we assume that covariance between outcomes is a function of distance in the covariate

space.

2.2 The Global GPRD Estimator

For the global GPRD estimator, we place a Gaussian process (GP) prior on f (x),

p(f) = GP(Xβ,K(X)), (9)

where K is the squared exponential automatic relevance determination covariance func-

tion

K (X,X ′) = σ2
f exp

(
−0.5

∑
j

(
X·,j −X ′·,j

)2
`2j

)
(10)

with hyperparameters σf , the scale factor as in the squared exponential covariance func-

3A constant hyperparameter is added to K if an intercept is desired.
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tion from Equation 5, and ` is a length scale vector with a separate length scale for each

predictor variable, and where X =

[
1|x|D

]
, with

D =


1 if x ≥ c,

0 otherwise.

(11)

Note that there is never a difference between observations on the value of the intercept

column, so the X that goes into the mean function Xβ will include that column, but the X

going into the covariance function does not (and accordingly ` is of length two, not three);

we suppress this difference in the notation for simplicity.

We use a Gaussian prior for β, with mean b and covariance B. Then the posterior over

β is given by

β | y, X ∼ N
(
β̄,Σβ

)
, (12)

β̄ = Σβ

(
XTK−1y y +B−1b

)
, (13)

Σβ =
(
B−1 +XTK−1y X

)−1
, (14)

Ky = K(X) + σ2
yI (15)

(see Rasmussen and Williams (2006), section 2.7). Note that for the common case where

b = 0, β̄ simplifies to Σβ(XTK−1y y).
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Then the mean and variance of f at a test point X∗ is

f̄(X∗) = X∗β̄ +K∗K
−1
y (y −Xβ̄), (16)

cov(f∗) = K∗∗ −K∗K−1y KT
∗ +RT (XTK−1y X)−1R, (17)

K∗ = K(X∗, X), (18)

K∗∗ = K(X∗), (19)

R = XT
∗ −XTK−1y KT

∗ (20)

(See Equations 2.24, 2.38, and 2.41 in Rasmussen and Williams 2006). These differ

from Equations 7 and 8 because we have incorporated uncertainty in the mean function

parameters.4

So we are interested in the treatment effect

τGPRD−G
def
= f

([
0 1

])
− f

([
0 0

])
, (21)

or the difference between f (x = 0, D = 1) and f (x = 0, D = 0), which is distributed

τGPRD−G ∼ N (µ∗,Σ∗) , (22)

µ∗ = f̄

([
0 1

])
− f̄

([
0 0

])
, (23)

Σ∗ = cov

(
f

([
0 1

]))
+ cov

(
f

([
0 0

]))
. (24)

Note the key differences between the global GPRD estimator and the global polynomial

RD estimator. In the global polynomial model, the treatment effect is taken to be the coef-

ficient on D, which gives the difference in expected outcomes for the treated and untreated

4One could instead select mean function coefficients by maximizing the marginal log likelihood as we
discuss for the covariance function hyperparameters in Section 2.4, in which case f̄(X∗) and cov(f∗) would
again be given by Equations 7 and 8.
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observations at any point x. In the GP model, this is not true; the coefficient on D impacts

the expected outcome, but the effect of the treatment also runs through the kernel (see

Equation 16).

2.3 The Piecewise GPRD Estimator

Non-parametric regression discontinuity designs fit polynomials on either side of the discon-

tinuity, and estimate the treatment effect as the difference of the limit of the polynomials at

the cutoff. The piecewise GP estimation strategy extends this approach by placing Gaussian

process (GP) priors over the functions on either side of the cutoff, which will be much more

flexible than the polynomial regression approach and less sensitive to overfitting predictions

close to the cutoff to observations far away from the cutoff. By design, the fit near the cutoff

will rely more on inputs close to the cutoff than those far away.

To formalize, x+ will be the inputs to the right of the cutoff and y+ the corresponding

outcomes, and analogously for x− and y−. Then we will learn two functions, f+ : x+ → y+

and f− : x− → y−. To do so, we place GP priors over the functions,

f+ ∼ GP(X+β+, K(x+)), (25)

f− ∼ GP(X−β−, K(x−)), (26)

where X· prepends the column vector 1 to x·, β· is a vector giving the intercept and

slope of the linear mean function, and K(·) is the isometric squared exponential covariance

function from Equation 5.

We again use a Gaussian prior for β, with mean b and covariance B, and the mean and

variance of f· at a test point x∗ is as given in Equations 16 and 17. Then we are interested

in the treatment effect

τGPRD−P
def
= f+(0)− f−(0), (27)
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which is distributed

τGPRD−P ∼ N (f̄+(0)− f̄−(0), cov(f+(0)) + cov(f−(0))). (28)

Note the key differences between the piecewise GPRD estimator and local linear or poly-

nomial RD estimators. The local polynomial estimators use only a portion of the data to

either side of the cutoff to avoid undue influence of observations far from the cutoff. In

contrast, the GP model is able to use all of the available data because the covariance be-

tween outputs decreases with distance in the covariate space, a natural and smooth way

to decrease undue influence of observations far from the cutoff while still borrowing some

information from them. Additionally, the local methods require specification of the degree of

the local polynomials, and this researcher-imposed model restriction can significantly impact

inference. By contrast, in the GP model, we place a prior over the possible mappings from

x to y and learn f(x) from the data.

Also note the differences between the piecewise GPRD estimator we introduce and the

approach taken in Branson et al. (2019). While Branson et al. largely rely on a shared

covariance assumption, we relax this assumption, selecting different covariance function hy-

perparameters for the treatment and control groups. When the covariance function hyper-

parameters in fact should be shared, parameter selection or sampling routines should be able

to recover that. When they are not, and the mapping from runnning variable to outcomes is

wholly different between the treatment and control groups, the piecewise GPRD estimator

we introduce may be most appropriate.

Taken together, our global and piecewise GPRD estimators can be seen as capturing

a fairly wide range of restrictiveness of prior assumptions in GP regression estimation of

treatment effects in RD designs. It is also useful to acknowledge one important assumption

shared by our approaches, that of stationarity, or that covariance hyperparameters do not

themselves also vary as a function of the running variable. We leave the relaxation of that
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assumption to future work.

2.4 Choosing Hyperparameters

Because our inferences are strongly affected by the choice of hyperparameters σy, σf , and

`, we need a theoretically-grounded, automatic procedure for selecting their values. Our

preferred approach is to place priors over the covariance function hyperparameters, propa-

gating uncertainty over their values into the posterior distribution of the treatment effect.

Note that in this case, however, we cannot use exact inference but must instead resort to

simulating the posterior with an MCMC sampler. In the empirical applications below, we

take this approach using the following prior distributions:

` ∼ InvGamma(5, 5) (29)

σf ∼ HalfNormal(0, 1) (30)

σy ∼ HalfNormal(0, 1) (31)

The inverse gamma prior on the length scale is a boundary-avoiding prior (Gelman, 2014,

313) which penalizes infinitesimal values, and the half-normal prior on σf ensures that some

prior weight is placed on the zero function. These priors are most sensible for x and y

variables that have been standardized so that their variance equals 1.

A practical impediment to the fully Bayesian approach is computation time, which scales

super-linearly with n. As of writing, fitting a Gaussian process regression with 1,000 ob-

servations by Hamiltonian Monte Carlo takes roughly half an hour. Though this is not too

time-consuming for applied work, it is prohibitive for simulations. So in the following section,

we speed up computation by plugging in hyperparameters that maximize the log marginal
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likelihood. In the case of a linear mean, the log marginal likelihood is

log p(y | X,b, B) = −1

2
MTQ−1M − 1

2
log |Q| − n

2
log 2π, (32)

M = Xb− y, (33)

Q = Ky +XBXT , (34)

(see Equation 2.43 in Rasmussen and Williams 2006). Again, note that for the common

case b = 0, M reduces to −y.

Then the gradient of the log marginal likelihood with respect to the hyperparameters

θ = (σy, σf , `) in the case of the isometric covariance function is

∂

∂θi
log p(y | X,b, B) =

1

2
MQ−1

∂Q

∂θi
Q−1M − 1

2
Tr

(
Q−1

∂Q

∂θi

)
, (35)

∂Q

∂θ
=


2σyI

2σf exp (−0.5K0)

σ2
f exp (−0.5K0) ◦K0

 , (36)

where the i, j element of the matrix K0 is given by

K0 i,j =
(xi − xj)2

`2
, (37)

and we can use (e.g.) the conjugate gradient method to optimize the hyperparameters.

The gradient for the automatic relevance determination case is analogous, but just extended

with an element for each element of ` accordingly.
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3 Comparing Models: Simulation Evidence

To assess performance of the GPRD estimators compared to existing methods, we engage in

two simulation exercises. First, we use a common set of simulations from the RD literature,

where the running variable x is given by 2z − 1, with z ∼ B(2, 4), and y = fj(x) + ε,

with ε ∼ N (0, 0.12952). To specify the shape function fj(x), we use the three functions

explored in Calonico, Cattaneo and Titiunik (2014), themselves taken from Lee (2008) and

Ludwig and Miller (2007). We additionally use global linear and quadratic functions, f(x) =

x+ τI(x > 0) and f(x) = x2 + τI(x > 0), with τ = 0 and τ = 1, for a total of seven tested

data generating processes. For each DGP, we simulate 1,000 datasets of 500 observations.

We estimate treatment effects and confidence intervals for global GPRD, piecewise GPRD,

local linear, and fifth-degree global polynomial approaches (the Lee and Ludwig and Miller

DGPs both use five-degree polynomials). Figure 2 depicts the root mean squared error,

mean absolute error, confidence interval length, and confidence interval coverage averaged

by simulation condition. The GPRD methods generally outperform other methods in terms

of error and confidence interval length; when averaged across conditions, the GPRD methods

outperform all other methods on these metrics, and for some DGPs, this difference is more

pronounced.

In the Lee and Ludwig-Miller simulations, the GPRD estimates are biased; this echoes

findings in Branson et al. (2019), who note that with these DGPs, the functions’ slope

increases markedly near the cutoff, violating the stationarity assumption we leverage. As

with any regularizing estimate, one can think of our method as deliberately introducing a

bias in small samples to reduce variance and overfitting. As sample size increases, this bias

shrinks. The results averaged across all conditions for all data generating processes, as well

as only stationary data generating processes, are given in Table 1.

In the absence of a violation of the stationarity assumption, the GPRD methods increases

precision while retaining coverage. Importantly, note that these simulations, standard in
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Figure 2: Fit statistics for treatment effect estimates from the global and piecewise GPRD
models (plotted in empty and filled green circles respectively), local linear and polynomial
regression (plotted in filled and empty blue squares respectively), and global linear and
polynomial regression (plotted in filled and empty yellow triangles).

the literature, assume very low observation noise. When σ2 is large, we see an even greater

difference in performance between the methods. We explore the settings where ε ∼ N (0, 0.52)

and ε ∼ N (0, 1) for f(x) = x + τI(x > 0) for τ = 0 and τ = 1 to consider the difference

in performance in (perhaps more realistic) noisier environments. We display the RMSE,

MAE, interval length, and coverage by condition in Figure 3 and report the pooled results

in Table 2.

In this setting, the mean absolute error, root mean squared error, and confidence interval

length are all more than twice as large for the local linear regression method than the

piecewise GPRD method, and the global GPRD method edges out the piecewise GPRD
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Table 1: Fit statistics averaged across replicates and data generating processes.

Estimator MAE RMSE Mean CI Length Mean CI Coverage

All DGPs

Global GPRD 0.041 0.061 0.138 0.830
Piecewise GPRD 0.047 0.067 0.161 0.851
Local Linear 0.052 0.068 0.259 0.928
Local Polynomial 0.103 0.136 0.511 0.914
Global Linear 0.466 0.735 0.137 0.330
Global Polynomial 0.059 0.075 0.288 0.949

Stationary DGPs

Global GPRD 0.028 0.038 0.126 0.928
Piecewise GPRD 0.032 0.043 0.149 0.936
Local Linear 0.047 0.060 0.247 0.932
Local Polynomial 0.102 0.137 0.506 0.916
Global Linear 0.303 0.422 0.129 0.380
Global Polynomial 0.059 0.075 0.288 0.948

Table 2: Fit statistics averaged across replicates and noise and effect sizes.

Estimator MAE RMSE Mean CI Length Mean CI Coverage

Global GPRD 0.111 0.149 0.476 0.913
Piecewise GPRD 0.128 0.170 0.627 0.946
Local Linear 0.265 0.360 1.410 0.931
Local Polynomial 0.580 0.796 2.880 0.910
Global Linear 0.102 0.135 0.511 0.951
Global Polynomial 0.345 0.461 1.660 0.949

method further still. OLS, the global linear model, does very well, as may be expected

when the simulation’s DGP matches exactly the OLS assumptions. Remarkably, the GPRD

methods perform similarly to the model whose assumptions match the DGP. In the common

scenario where noise is appreciable, the GPRD methods outperform existing local methods

substantially and do no worse than when the researcher can correctly intuit the precise

functional form of the mapping from running variable to outcomes.
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Figure 3: Fit statistics for treatment effect estimates from the global and piecewise GPRD
models (plotted in empty and filled green circles respectively), local linear and polynomial
regression (plotted in filled and empty blue squares respectively), and global linear and
polynomial regression (plotted in filled and empty yellow triangles).

4 Empirical Applications

We selected the following empirical applications based on three criteria. First, they are all

published in top political science and economics journals over the past five years. Second,

they all adhere to current best practices for RD studies, employing local polynomial es-

timators with automated bandwidth selectors and robust standard errors, and conducting

extensive falsification and robustness tests. Third, the authors provide sufficient replication

materials to reproduce their work. In short, we select these studies not because they are poor

examples of applied RD, but because they are good examples of careful and rigorous em-

pirical work. Nevertheless, many of these studies employ datasets that are too low-powered
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near the cutoff to reliably detect plausible treatment effects.

In total, we replicate 29 studies published since 2015 that employ a regression discontinu-

ity design. We re-estimate the treatment effects using both CCT local linear regression and

piecewise GPRD. These estimates are summarized in Figure 4, standardized so as to appear

on the same scale. For studies with a large number of observations near the cutoff, the

estimates from the two methods do not differ significantly. But for studies with low power

near the cutoff, the two estimates often differ noticeably. Typically, the GPRD estimate is

closer to zero than the CCT estimate, but not universally – see, for example, the replications

of Carson and Sievert (2017) and Horowitz et al. (2019). The reader may find descriptions

of each replication in the appendix, and below we discuss three in detail.

4.1 The Radical Right and Party Manifestos

Abou-Chadi and Krause (2018) study how the presence of radical right parties influence the

platforms of mainstream parties. Their causal identification strategy is based on electoral

thresholds in parliamentary systems; typically it is required that a party clear some per-

centage of the total vote before gaining representation in parliament, where the particular

threshold varies by country. The authors compare elections where radical right parties barely

exceeded the threshold (gaining representation) and barely missed the threshold, observing

how mainstream political parties respond.

The dependent variable is change in a measure of Cultural Protection in the party’s

manifesto during the following election. These data are compiled by the Comparative Man-

ifestos Project (Volkens, Pola Lehmann and Werner, 2015), and the outcome variable is a

function of the difference between the number of favorable mentions of cultural diversity

and encouragement of integration and cultural homogeneity in the party’s platform (Lowe

et al., 2011). In their paper, Abou-Chadi and Krause (2018) present estimates from a diverse

range of specifications, which range from 3.1 to 4.9. Replicating these results using CCT
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Figure 4: Estimates and 95% confidence intervals across 30 replications, sorted by sample
size within the CCT bandwidth. Estimates are standardized in order to plot them on the
same scale.
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bias-corrected standard errors and robust confidence intervals yields an estimate of 3.96,

with 95% confidence interval [1.7, 6.2].

To get a sense of the relative magnitude of this estimated effect, consider Figure 5.

This plots the average value of the Cultural Protection score, by country, for each family

of political party since 1980. Although the Cultural Protection score is noisy from election

year to election year, averaging across years yields predictable patterns. Right-leaning parties

tend to score higher on the measure than left-leaning parties, and Nationalist parties – where

they exist – typically score 2 to 3 points higher than the average mainstream party.

Figure 5: Mean Cultural Protection score by country and party family (all elections post-
1980; Center-Left includes Social Democrats and Liberals, Center-Right includes Christian
Democrats and Conservatives).

In this context, an estimated effect size of 3.9 is enormous. If true, it suggests that not

only do mainstream parties respond to Radical Right representation by moving their plat-
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forms to the right, but they do so in such a way that their rhetoric completely closes or even

overtakes the average gap between mainstream and rightwing nationalist party positions.

By comparison, GPRD yields a more modest treatment effect estimate, with a 95% pos-

terior interval that covers zero. Table 3 compares the effect sizes estimated by the piecewise

GPRD and CCT estimators, and Figure 6 visualizes those estimates. We can see that the

local linear estimator yields a steep prediction line just to the left of the cutoff, within a

bandwidth that contains only 24 observations. Because the GPRD estimator makes use of

observations outside that bandwidth, it yields a mean function that is less overfit to obser-

vations near the cutoff. The estimated treatment effect is roughly 0.33 standard deviations,

or 0.5 units on the cultural protectionism scale, a more a priori plausible effect size.

Figure 6: Fit comparison between GPRD (black with shaded 95% posterior interval) and
CCT (blue) estimators for the Abou-Chadi and Krause (2018) application. All variables
standardized with x centered around the RD cutoff and y centered around its mean.
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Table 3: Treatment effect comparison between GPRD and local linear regression for the
Abou-Chadi and Krause (2018) application.

Estimator Treatment effect 95% CI

Local Linear 2.38 [1.02, 3.74]
Piecewise GPRD 0.33 [−0.09, 1.08]

4.2 Ethnic Diversity and Municipal Public Spending

The second empirical illustration comes from Beach and Jones (2017), who study the effect

of diverse city council representation on municipal-level public goods spending. There is

a large literature on this topic, dating back to Alesina, Baqir and Easterly (1999) and

continuing through Hopkins (2011) and Trounstine (2015), finding that in ethnically diverse

and segregated cities, municipal governments devote less spending to public goods than in

ethnically homogeneous cities. All of these studies rely on cross-sectional or longitudinal

regression analysis of public finance data, and so lack a credible causal identification. Beach

and Jones (2017) approach the problem through an RD analysis of city council elections

in California. Because narrowly elected city councilors from a ‘non-modal’ ethnicity should

increase the diversity of a city council, the discontinuity at the plurality margin allows for

the causal identification of an effect of council diversity on public spending.

By regressing per capita public goods spending on the vote margin of ‘non-modal’ can-

didates for races where a non-modal candidate faced a modal candidate, Beach and Jones

(2017) estimate a treatment effect of -0.31 on a log scale, implying that the election of a single

councilmember that increases ethnic diversity causes a 31% drop in public goods spending.

To consider this estimate in context, a 31% cut in public goods spending amounts to

roughly $463 per capita for the average city. This is equivalent to eliminating all spending

on police (13% in the average city), fire protection (9%), and roads (9%). By comparison,

other studies of municipal spending suggest much more modest (or null) effects. For example,

in an RD analyis of Democratic vs. Republican mayoral candidates, de Benedictis-Kessner
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and Warshaw (2016) find that narrowly-elected Democratic mayors increase public spending

by 5% on average. In their original study of US cities, Alesina, Baqir and Easterly (1999)

find that ethnically diverse cities spend 6% to 9% lower shares on “productive” public goods

than ethnically homogeneous cities.5 All of these estimates are several multiples smaller than

30%.

Even assuming that the effect of a non-modal city councilmember is comparable to that of

a Democratic mayor,6 the RD analysis would be too underpowered to reliably detect a more

plausible effect. The minimum detectable effect size given the number of observations in

this study is roughly 32% (Bloom, 1995)7, and the RD plots in Figure 7 makes this problem

clear: although a substantial fraction of the sample lies within the bandwidth, the variation

in public goods spending is very large relative to any plausible effect size. A sufficiently high

powered study to detect an effect size of 5% would require many times more observations

within the neighborhood of the cutoff.

Table 4 and Figure 7 compare the GPRD and local linear RD estimates. The GPRD

estimate is four times smaller than the local linear estimate, and not reliably different than

zero.

Table 4: Treatment effect comparison between GPRD and local linear regression for the
Beach and Jones (2017) application.

Estimator Treatment effect 95% CI

Local Linear −0.618 [−1.07,−0.167]
Piecewise GPRD −0.165 [−0.519, 0.113]

5This is the estimated effect of changing the Herfindahl ethnic fractionalization index from 0 to 1 (i.e.
from perfect homogeneity to perfect heterogeneity).

6Not an unreasonable assumption, since in many municipalities the mayor does not wield strong executive
power, and is essentially the chair of the city council.

7See Cattaneo, Titiunik and Vazquez-Bare (2019) for derivation of power calculations in the RD context
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Figure 7: Fit comparison between GPRD (black with shaded 95% posterior interval) and
CCT (blue) estimators for the Beach and Jones (2017) application. All variables standardized
with x centered around the RD cutoff and y centered around its mean.

4.3 Political Connections and Firm Profitability in Russia

Szakonyi (2018) investigates close elections to regional legislatures in Russia, testing whether

firms with regional political connections subsequently see higher profit margins. The local

linear RD estimate is strongly positive, suggesting that the election a board member causes

as much as a 15% increase in firm profits. This is lucrative effect! As the author notes, “The

presence of a political connection can spell the difference between an impressively profitable

firm and one that barely breaks into the black.”

By comparison, the GPRD treatment effect estimate is approximately zero. Eyeballing

Figure 8, it is clear that, unlike the previous two examples, there are plenty of observations

within the CCT bandwidth. But, like the examples from Figure 1 a chance pattern in

observations near the cutoff yields steep-sloped prediction lines that appear to exaggerate

24



the discontinuity.

Figure 8: Fit comparison between GPRD (black with shaded 95% posterior interval) and
CCT (blue) estimators for the Szakonyi (2018) application. All variables standardized with
x centered around the RD cutoff and y centered around its mean.

Table 5: Treatment effect comparison between GPRD and local linear regression for the
Szakonyi (2018) application.

Estimator Estimate 95% CI
CCT 0.46 [0.105, 0.816]
GPRD 0.05 [-0.146, 0.306]

5 Conclusion

In this paper, we have demonstrated how low-powered regression discontinuity analyses can

yield misleading and exaggerated causal effect estimates, characterized by an implausibly

large divergence in the slope of the conditional expectation function in the neighborhood of
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the cutoff. We propose Gaussian Process Regression Discontinuity (GPRD) as a principled

method to address these problems. GPRD performs well in simulations and provides more

plausible treatment effect estimates in empirical applications.

In future work we plan to expand GPRD to handle fuzzy RD designs, clustered data,

and the inclusion of additional pre-treatment covariates. All of these will be made available

for researchers in the forthcoming R package gprd.
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Appendices

A Empirical Applications

Since 2015, over sixty studies employing a regression discontinuity design have been published

in American Political Science Review, American Journal of Political Science, and Journal

of Politics. We are able to replicate twenty-eight of the studies listed in Table 6 using both

local linear and Gaussian Process RD. The appendices that follow contain details about

each study’s design and the estimated treatment effect using both methods. Throughout,

we report standardized effect sizes, centering the running variable on the RD cutoff and the

outcome variable on its mean. In the figures, the local linear fit is plotted in blue and the

GPRD fit and 95% posterior interval is plotted in black. Raw data are semi-transparent

circles, though for some visualizations it is clearer to present the averages by bins instead

of the raw data. These binned data are represented as squares. The GPRD posterior is

sampled via Hamilton Monte Carlo (rstan), and to speed computation we keep at most

1,000 observations closest to the cutoff.
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author year journal outcome treatment score
1 Grumbach & Sahn (2020) APSR Minority Campaign Contributions Minority Candidate Primary Vote Share
2 Thompson (2020) APSR Sheriff Compliance with Federal Immigration Requests Sheriff Partisanship Vote Share
3 Dynes & Holbein (2020) APSR Policy Outcomes US State Party Control Vote Share
4 Cavaille & Marshall (2019) APSR Anti-Immigrant Attitudes Extra Year of Schooling Birth Cohort
5 Mo & Conn (2018) APSR Beliefs About Disadvantage National Service (TFA) TFA Selection Criteria
6 Broockman & Skovron (2018) APSR Contacts from Republicans Republican Politician Vote Share
7 Hall & Thompson (2018) APSR In-Party Turnout Extremist Nominee Primary Vote Share
8 Dahlgaard (2018) APSR Turnout Child Eligibility Child’s Age
9 Fiva & Smith (2018) APSR Dynasty Formation Incumbency Vote Share

10 Szakonyi (2018) APSR Firm Profits Connected Politician Vote Share
11 Nellis & Siddiqui (2018) APSR Religious Violence Secular Party Rule Vote Share
12 Hyytinen et al. (2018) APSR Public Spending Municipal Employee Politician Vote Share
13 Clinton & Sances (2018) APSR Election Turnout Medicaid Expansion Distance to State Border
14 Hainmueller, Hangartner, & Pietrantuono (2017) APSR Immigrant Social Integration Naturalization Referendum Vote Share
15 Klasnja & Titiunik (2017) APSR Vote Share Incumbency Vote Share
16 Gulzar & Pasquale (2017) APSR Employment Program Implementation Number of Political Principals Jurisdiction Size
17 Folke, Persson, & Rickne (2016) APSR Becoming a Party Leader Primary Win Primary Vote Share
18 Croke, Grossman, Larreguy, & Marshall (2016) APSR Election Turnout Education Birth Year
19 Holbein (2016) APSR School Board Election Turnout NCLB Failure Signal NCLB Score
20 Larreguy, Marshall, & Querubin (2016) APSR Turnout and PRI/PAN Vote Share New Polling Station Precinct Population
21 Xu & Yao (2015) APSR Local Public Goods Expenditure Large Clan Leader Vote Share
22 Hall (2015) APSR General Election Vote Share Extremist Nominee Primary Vote Share
23 Broockman & Ryan (2016) AJPS Contacting Legislators Copartisan Legislator Vote Share
24 Coppock & Green (2016) AJPS Downstream Voting Upstream Voting Age
25 Hidalgo & Nichter (2016) AJPS Turnout Voter Audits Electorate-Population Ratio
26 Holbein & Hillygus (2016) AJPS Youth Turnout Preregistration Date of Birth
27 Gilardi (2015) AJPS Women Candidates Women Politicians Vote Share
28 Rueda (2017) AJPS Vote Buying Polling Place Size Registered Voters
29 Lopes da Fonseca (2017) AJPS Vote Share Incumbency Vote Share
30 Novaes (2018) AJPS Party Switching Mayoral Win Vote Share
31 Nyhan, Skovron, & Titiunik (2017) AJPS Youth Turnout Voting Eligibility Age
32 Velez & Newman (2019) AJPS Turnout Access to Spanish-language TV Distance to reception boundary
33 Larreguy, Montiel Olea, & Guerubin (2017) AJPS Support for SNTE Machine Polling Place Size Number of Registered Voters
34 Bohlken (2018) AJPS Project Expenditure Co-partisan MP Vote Share
35 Kim (2019) AJPS Women’s Turnout Direct Democracy Population
36 Albertus (2019) AJPS Conflict Land Reform Distance to Boundary
37 Fergusson, Guerubin, Ruiz, & Vargas (2020) AJPS Right-Wing Paramilitary Violence Left-Wing Party Control Vote Share
38 Bischof & Wagner (2019) AJPS Ideological Polarization Radical Right Representation Vote Share
39 Palmer & Schneer (2015) JOP Corporate Board Membership Elected to Office Vote Share
40 Lerman & McCabe (2017) JOP Attitudes toward ACA Personal Experience with Public Health Insurance
41 Erikson, Folke, & Snyder (2015) JOP Presidential Vote Share Copartisan Governor Gubernatorial Vote Share
42 Caughey, Warshaw, & Xu (2017) JOP Policy Liberalism Democratic Governor Gubernatorial Vote Share
43 Klasnja (2015) JOP Vote Share Incumbency Vote Share
44 de Benedictis-Kessner & Warshaw (2016) JOP Municipal Fiscal Policy Mayoral Partisanship Vote Share
45 Eggers & Spirling (2017) JOP Vote Share Incumbency Vote Share
46 Rozenas, Schutte, & Zhukov (2017) JOP Pro-Russian Vote Share Deportations Distance to Boundary
47 Marshall (2016) JOP Voting Conservative Extra Year of Schooling Birth Cohort
48 de Benedictis-Kessner (2018) JOP Vote Share Incumbency Vote Share
49 de Benedictis-Kessner & Warshaw (2020) JOP County Spending Democratic Legislator Vote Share
50 Sances (2017) JOP Presidential Vote Share Tax Increases Direct Democracy
51 Schafer & Holbein (2020) JOP Election Turnout One Extra Hour Of Daylight Distance to Time Zone Boundary
52 Feierhard (2019) JOP Presidential Vote Share Copartisan Municipal Politician Vote Share
53 Agira (2015) JOP Vote Share Incumbency Vote Share
54 de Kadt (2017) JOP Election Turnout Voting Eligibility Age

55 RozenasÂ & Stukal (2019) JOP Media Coverage (Censorship) Good or Bad News Financial Index Change
56 Callen, Gulzar, & Rezaee (2020) JOP Assigned Doctors Governing Party Constituency Vote Share
57 Fouirnaies & Mutlu-Eren (2015) JOP Intergovernmental Transfers Copartisan Local Councilor Vote Share
58 Imai, King, & Rivera (2020) JOP Incumbent Vote Share Antipoverty Program Poverty Index
59 Horowitz, et al. (2019) JOP Year 2 Prediction Accuracy Joined Superforecaster Team Year 1 Prediction Accuracy
60 Fouirnaies & Hall (2020) JOP General Election Vote Share Primary Runoff Primary Vote Share
61 Carson & Sievert (2017) JOP Presidential Vote Share Congressional Copartisan Congressional Vote Share
62 Cooper, Kim, & Urpelainen (2018) JOP Pro-Environmental Voting Shale Endowment Distance to Boundary

Table 6: Applied regression discontinuity papers in top political science journals between
2015 and 2020.
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A.1 Albertus (2019)

This paper estimates the effect of land reform in Peru on subsequent civil conflict, leveraging

the discontinuity in treatment at the geographic boundary between agricultural zones.

Figure A.1: Local linear and GPRD estimates. Dotted vertical line is the cutoff, solid black
lines are the GPRD fit, and solid blue lines are the CCT local linear fit.

Estimator Estimate 95% CI
1 CCT 0.16 [-0.092, 0.411]
2 GPRD 0.08 [-0.144, 0.284]
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A.2 Beach & Jones (2017)

This paper estimates the effect of city council diversity on public spending, leveraging the

discontinuity in treatment when a non-modal candidate’s vote margin exceeds zero.

Figure A.2: Local linear and GPRD estimates. Dotted vertical line is the cutoff, solid black
lines are the GPRD fit, and solid blue lines are the CCT local linear fit.

Estimator Estimate 95% CI
1 CCT -0.62 [-1.069, -0.167]
2 GPRD -0.17 [-0.52, 0.114]
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A.3 Callen, Gulzar, & Rezaee (2020)

This paper estimates the effect of the governing party in Pakistan on the assignment of

doctors, leveraging the discontinuity in treatment when a candidate’s margin of victory

exceeds zero.

Figure A.3: Local linear and GPRD estimates. Dotted vertical line is the cutoff, solid black
lines are the GPRD fit, and solid blue lines are the CCT local linear fit.

Estimator Estimate 95% CI
1 CCT 0.47 [-0.111, 1.052]
2 GPRD -0.00 [-0.288, 0.407]
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A.4 Dahlgaard (2018)

This paper estimates the effect of a child’s eligibility to vote on the election turnout of

parents, leveraging the discontinuity in treatment when the child’s birthdate falls on the

registration cutoff.

Figure A.4: Local linear and GPRD estimates. Dotted vertical line is the cutoff, solid black
lines are the GPRD fit, and solid blue lines are the CCT local linear fit.

Estimator Estimate 95% CI
1 CCT 0.18 [0.043, 0.313]
2 GPRD 0.14 [0.017, 0.268]
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A.5 de Benedictis-Kessner & Warshaw (2016)

This paper estimates the effect a Democratic mayor on total expenditures in US cities,

leveraging the discontinuity in treatment at the plurality threshold of vote share.

Figure A.5: Local linear and GPRD estimates. Dotted vertical line is the cutoff, solid black
lines are the GPRD fit, and solid blue lines are the CCT local linear fit.

Estimator Estimate 95% CI
1 CCT 0.46 [0.057, 0.858]
2 GPRD 0.21 [-0.014, 0.452]
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A.6 Eggers & Spirling (2017)

This paper estimates the incumbency effect for UK Conservatives vis a vis Liberal Democrats,

leveraging the discontinuity in treatment at the plurality threshold of vote share.

Figure A.6: Local linear and GPRD estimates. Dotted vertical line is the cutoff, solid black
lines are the GPRD fit, and solid blue lines are the CCT local linear fit.

Estimator Estimate 95% CI
1 CCT 0.39 [0.101, 0.684]
2 GPRD 0.32 [0.06, 0.583]
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A.7 Fergusson, Guerubin, Ruiz, & Vargas (2020)

This paper estimates the effect of left-wing party control on right-wing paramilitary violence

in Colombia, leveraging the discontinuity in treatment at the plurality threshold of vote

share in local elections.

Figure A.7: Local linear and GPRD estimates. Dotted vertical line is the cutoff, solid black
lines are the GPRD fit, and solid blue lines are the CCT local linear fit.

Estimator Estimate 95% CI
1 CCT 0.64 [0.047, 1.226]
2 GPRD 0.34 [-0.269, 0.935]
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A.8 Grumbach & Sahn (2020)

This paper estimates the effect of minority candidates on campaign contributions from mi-

norities, leveraging the discontinuity in treatment at the plurality threshold in primary vote

share. There are a series of RD estimates in the paper; below we report the results for Latino

Democratic candidates, the largest reported effect size.

Figure A.8: Local linear and GPRD estimates. Dotted vertical line is the cutoff, solid black
lines are the GPRD fit, and solid blue lines are the CCT local linear fit.

Estimator Estimate 95% CI
1 CCT 0.81 [0.16, 1.461]
2 GPRD 0.67 [0.263, 1.165]
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A.9 Hall (2015)

This paper estimates the effect of nominating an extremist candidate on general election

vote share, leveraging the discontinuity in treatment when an extremist candidate’s primary

vote margin exceeds zero.

Figure A.9: Local linear and GPRD estimates. Dotted vertical line is the cutoff, solid black
lines are the GPRD fit, and solid blue lines are the CCT local linear fit.

Estimator Estimate 95% CI
1 CCT -0.75 [-1.53, 0.032]
2 GPRD -0.29 [-0.736, 0.108]
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A.10 Hall & Thompson (2018)

This paper estimates the effect of nominating an extremist candidate on in-party turnout,

leveraging the discontinuity in treatment when an extremist candidate’s primary vote margin

exceeds zero.

Figure A.10: Local linear and GPRD estimates. Dotted vertical line is the cutoff, solid black
lines are the GPRD fit, and solid blue lines are the CCT local linear fit.

Estimator Estimate 95% CI
1 CCT -1.00 [-1.544, -0.447]
2 GPRD -0.43 [-0.94, 0.063]
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A.11 Hidalgo & Nichter (2015)

This paper estimates the effect of voter audits on the re-election probability of incumbents,

leveraging the discontinuity in treatment when the electorate as a percentage of the popula-

tion exceeds 80%.

Figure A.11: Local linear and GPRD estimates. Dotted vertical line is the cutoff, solid black
lines are the GPRD fit, and solid blue lines are the CCT local linear fit.

Estimator Estimate 95% CI
1 CCT -0.35 [-0.595, -0.099]
2 GPRD -0.21 [-0.468, 0.026]
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A.12 Horowitz, et al. (2019)

This paper estimates the effect of joining a Superforecaster Team on subsequent predic-

tion accuracy, leveraging the discontinuity in treatment when prediction accuracy in Year 1

exceeds a threshold.

Figure A.12: Local linear and GPRD estimates. Dotted vertical line is the cutoff, solid black
lines are the GPRD fit, and solid blue lines are the CCT local linear fit.

Estimator Estimate 95% CI
1 CCT 1.04 [0.329, 1.751]
2 GPRD 1.34 [1.052, 1.619]
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A.13 Klasnja & Titiunik (2017)

This paper estimates the incumbency disadvantage in Brazil, leveraging the discontinuity in

treatment when a mayoral candidate’s margin of victory exceeds zero.

Figure A.13: Local linear and GPRD estimates. Dotted vertical line is the cutoff, solid black
lines are the GPRD fit, and solid blue lines are the CCT local linear fit.

Estimator Estimate 95% CI
1 CCT -0.36 [-0.493, -0.235]
2 GPRD -0.20 [-0.367, -0.06]
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A.14 Novaes (2018)

This paper estimates the effect of winning a mayoral election on subsequent party switching,

leveraging the discontinuity in treatment when a mayoral candidate’s margin of victory

exceeds zero.

Figure A.14: Local linear and GPRD estimates. Dotted vertical line is the cutoff, solid black
lines are the GPRD fit, and solid blue lines are the CCT local linear fit.

Estimator Estimate 95% CI
1 CCT -0.35 [-0.52, -0.182]
2 GPRD -0.34 [-0.495, -0.173]
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A.15 Sances (2017)

This paper estimates the effect of unrelated municipal tax increases on the incumbent Pres-

ident’s vote share, leveraging the discontinuity in treatment when a tax-increasing referen-

dum’s margin of victory exceeds zero.

Figure A.15: Local linear and GPRD estimates. Dotted vertical line is the cutoff, solid black
lines are the GPRD fit, and solid blue lines are the CCT local linear fit.

Estimator Estimate 95% CI
1 CCT -0.28 [-0.595, 0.036]
2 GPRD -0.20 [-0.378, -0.017]

45



A.16 Szakonyi (2018)

This paper estimates the effect of Russian firms’ political connections on their subsequent

profitability, leveraging the discontinuity in treatment when the vote margin of a politician

connected to the firm exceeds zero.

Figure A.16: Local linear and GPRD estimates. Dotted vertical line is the cutoff, solid black
lines are the GPRD fit, and solid blue lines are the CCT local linear fit.

Estimator Estimate 95% CI
1 CCT 0.46 [0.105, 0.816]
2 GPRD 0.05 [-0.146, 0.306]
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A.17 Thompson (2020)

This paper estimates the effect of sheriff partisanship on the probability of complying with

federal immigration requests, leveraging the discontinuity in treatment when a sheriff can-

didate’s margin of victory exceeds zero.

Figure A.17: Local linear and GPRD estimates. Dotted vertical line is the cutoff, solid black
lines are the GPRD fit, and solid blue lines are the CCT local linear fit.

Estimator Estimate 95% CI
1 CCT -0.29 [-0.674, 0.1]
2 GPRD -0.09 [-0.334, 0.138]
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