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Abstract

Pretrained text embeddings are a fast and scalable method for determining whether two texts have similar
meaning, capturing not only lexical similarity, but semantic similarity as well. In this article, I show
how to incorporate these measures into a probabilistic record linkage procedure that yields considerable
improvements in both precision and recall over existingmethods.The procedure even allows researchers to
link datasets across different languages. I validate the approachwith a series of political science applications,
and provide open-source statistical software for researchers to efficiently implement the proposed method.
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1. Introduction

Empirical social scientists frequently need to merge information from multiple datasets prior to
conducting their analyses, but it is only in rare cases that two datasets contain a shared variable
that unambiguously identifies which records belong to the same entity. In the absence of such exact
matching variables, researchers must perform fuzzy record linkage—linking records based on some
measure of similarity between variables. When working with text data, existing approaches commonly
rely on lexical measures of string similarity (Jaro 1989). These include “edit distance” measures (e.g.,
Jaro-Winkler and Levenshtein distance), string metrics that compare the frequency distributions of
characters (e.g., cosine similarity), and set theoretic measures (e.g., Jaccard similarity), among many
others. The most commonly used and cited fuzzy record linkage procedures in political science employ
one or more of these metrics to capture the distance between pairs of records (Enamorado, Fifield, and
Imai 2019; Kaufman and Klevs 2022).

Lexical similarity is a powerful tool for record linkage when datasets contain misspellings, typos, or
other irregularities in data entry. But these measures have well-understood shortcomings, particularly
in cases where lexically dissimilar strings can be used to represent the same entity. For example, the
name “Patricia” is more lexically similar to “Patrick” than it is to its nickname “Trish.” Many record
linkage problems that political scientists encounter have this property, in which semantically similar
records can be represented by lexically dissimilar strings. Elected officials may be referenced by their
legal name in one dataset and their nickname in another. An organization may be listed under its full
name in one dataset and an acronym in another. For scholars of comparative and international politics,
records may even appear in multiple languages. When faced with record linkage problems like these,
a measure that captures not only the lexical similarity between strings, but their semantic similarity as
well, would be highly desirable.

©The Author(s), 2025. Published by Cambridge University Press on behalf of The Society for Political Methodology.
This is anOpenAccess article, distributed under the terms of theCreativeCommonsAttribution licence (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
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Table 1. Examples where lexical similarity is a misleading measure of match quality.

String 1 String 2 Levenshtein Jaro-Winkler Jaccard Embedding

AARP American Association of Retired Persons 0.103 0.517 0.188 0.837

AARP AAA 0.500 0.722 0.333 0.555

USPS U.S. Post Office 0.214 0.655 0.250 0.814

USPS UPS 0.750 0.806 1.000 0.753

Mike Kelly George Joseph “Mike” Kelly, Jr. 0.323 0.354 0.421 0.827

Mike Kelly Mark Edward Kelly 0.471 0.757 0.538 0.615

Kit Bond Christopher Samuel Bond 0.304 0.475 0.368 0.605

Kit Bond Katie Britt 0.364 0.627 0.455 0.445

Note: The first row of each pair is the true match, and the best match according to four string similarity measures is in bold. In each case,
lexical measures select the wrong match, while the cosine similarity between pretrained text embeddings selects the correct match.

Fortunately, such measures have recently become widely available, thanks to rapid advances in large
language models (LLMs) based on the transformer architecture (Vaswani et al. 2017). These models
encode language using text embeddings, wherein each word is represented by a real-valued vector of
numbers (Rodriguez and Spirling 2022). Once trained, the distance between these text embeddings
provides a useful measure of semantic similarity: words that are closer together in embedding space
tend to have similar meaning. Formally, if two strings of text are represented by the vectors a and b,
then their cosine similarity a⋅b

∣∣a∣∣∣∣b∣∣ measures how semantically related they are—with 0 being completely
orthogonal and 1 being identical.

Table 1 provides several examples in which the cosine similarity between text embeddings provides
a better measure of match quality than lexical similarity (see the next section for details on how these
cosine similarities are computed). Consider, for example, the problem of linking an organization’s full
name with its acronym (first four rows). Lexical measures of string distance will struggle with this sort
of record linkage task, since an organization’s acronym may be lexically more similar to the acronym
of another organization than it is to its own full name! In contrast, embedding vectors can encode the
fact that AARP stands for American Association of Retired Persons, by representing those strings as
vectors close to one another in space—this is how language models based on such embeddings (e.g.,
ChatGPT) “know” the relationship between those two concepts. In each of the examples in Table 1, the
cosine similarity between text embeddings chooses the correct match, while lexical measures of string
similarity do not. Consequently, a record linkage procedure that incorporates this measure of similarity
may significantly outperform procedures that rely exclusively on lexical similarity.

This is not the first article to propose using text embeddings for record linkage. Indeed, there is
by now an extensive literature applying transformer models to what computer scientists call entity
resolution—determining whether two or more entries in a large dataset refer to the same entity (Tang
et al. 2022; Zhou et al. 2021). These models have had significant practical applications in areas like
e-commerce, where merging product records across multiple websites is a challenging large-scale
problem. These approaches have been adapted to social science applications as well, most notably in
the work of Arora and Dell (2023). What distinguishes the current article from previous work is that
it incorporates embedding similarity into a probabilistic record linkage procedure. Such procedures
are preferable in social science for two main reasons: they do not rely on arbitrary thresholds to
determine whether two records constitute a match, and they allow post-merge analyses to account for
uncertainty introduced during record linkage (Enamorado et al. 2019). For applications where there
may be multiple correct matches for each observation, a method that can estimate match probabilities
will provide a principled approach for determining which records to merge, and how strongly to weight
each observation in a subsequent analysis.
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In this article, I propose a probabilistic record linkage procedure that incorporates pretrained text
embeddings into an active learning algorithm (Bosley et al. 2025; Enamorado 2018). The approach,
which I call fuzzylink, is a variant of Adaptive Fuzzy String Matching (Kaufman and Klevs 2022),
an iterative process of fitting a model, labeling uncertain matches, refining the model, and repeating
until the model converges. The labeling step is performed by zero-shot prompts to a language model,
which reduces time and expense compared to hand-labeling (Ornstein, Blasingame, and Truscott 2025).
Across a series of political science applications, I show that this approach significantly improves both
precision and recall over existing approaches, and can even perform some tasks—like multilingual
record linkage—that would be impossible using lexical similarity measures alone. In this article, I
focus on applications with a single fuzzy matching variable (and potentially multiple exact “blocking”
variables), and conclude by discussing how one might extend the procedure to multiple fuzzy matching
variables.

2. The Algorithm

Consider the problem of merging two datasetsA and B, with sample sizes nA and nB, respectively. Let
X be a matrix of predictors measuring the similarity between each record pair in the set A×B. The
goal of a probabilistic record linkage procedure is to estimate a model f (X) that maps X onto a match
probability for each record pair.

The workhorse model for this class of problem was first formalized by Fellegi and Sunter (1969).
The Fellegi–Sunter model is an unsupervised approach to record linkage, because it does not require
the researcher to provide labeled data on the true matching status of record pairs. Instead, the model
estimates match probabilities using unlabeled data, requiring the researcher to pre-specify a set of
discrete thresholds forwhat level of similarity constitutes amatch.One advantage of this approach is that
it can incorporate similarity metrics frommany different types of variables, including strings, numbers,
and geographic coordinates. Another key advantage is its computational efficiency. The fastLink
implementation of the Fellegi–Sunter model by Enamorado et al. (2019) can easily handle merging
large-scale administrative datasets with hundreds of millions of observations.

However, an unsupervised approach can be an inappropriate choice for record linkage problems
with a single fuzzy matching variable—like the applications described in this article—because without
overlapping information from multiple matching variables, the model’s accuracy will be quite sensitive
to the researcher’s choice of similarity thresholds. In such cases, one will generally prefer a supervised
approach, in which themodel learns themapping between string similarity andmatch probability based
on labeled data.

The main practical impediment to a supervised approach is that the total number of record pairs
scales with nA × nB , so it quickly becomes infeasible to label every record pair even in small-scale
applications. The general solution to such problems is active learning (Bosley et al. 2025; Enamorado
2018). Rather than exhaustively labeling every pair of records, an active learning approach identifies the
most informative record pairs with which to train the model—that is to say, the record pairs for which
the model is most uncertain. By iteratively fitting a model, selecting informative pairs to label, refitting
themodel, and repeating until the model converges, one can train a supervised learner using a relatively
small number of observations.

The active learning algorithm described below performs a fuzzy “left join,” identifying every record
in B that matches at least one record inA. It proceeds in six steps.

Step 1: Embedding. Select the string variable that identifies each record in A and B, and retrieve
text embeddings for each unique string. In the analyses that follow, I use 256-dimensional pretrained
embeddings from OpenAI.1 Wherever possible, the strings representing records should not be pre-
processed by stemming, converting to lowercase, or any other steps that one might take to reduce

1The most up-to-date embedding model offered by OpenAI as of February 2025 returns 3,072-dimensional embeddings,
but one can reduce the dimensionality through “Matryoshka Representation Learning” (Kusupati et al. 2024), dramatically
improving computation speed at little cost to accuracy.Themost recent training data for these embeddingmodels is September
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complexity in a bag-of-words representation (Grimmer and Stewart 2013); performance will generally
be improved if we embed text as it is most likely to appear in the training corpus (e.g., “Coca-Cola”
instead of “cocacola”). The output from this step will be two matrices MA and MB, with dimensions
nA×256 and nB ×256, respectively. Each row of these matrices is an embedding vector.2

Step 2: Compute Similarity Metrics. For each pair of records in the set A×B, compute the cosine
similarity between their embedding vectors. If the embeddings are normalized to length 1, a matrix
of cosine similarities can be efficiently computed by taking the product MA(MB)

′. If there are any
variables that must match exactly to link a record fromA to B (“blocking variables”), perform this step
only for pairs of records with exact matches on these variables. Since the computational complexity
of this step scales with nA ×nB, blocking can significantly improve efficiency and as practical matter
should be used whenever possible.

Step 3: Label a Training Set. Select a subset of record pairs and assign each pair a binary label, 1 if the
records are a true match and 0 otherwise. For this article’s analyses, I begin with an initial training set
of the 500 record pairs with the highest cosine similarity scores and generate labels using the following
zero-shot prompt to OpenAI’s GPT-4o3 :

Decide if the following two names refer to the same {record_type}.
{additional_instructions} Think carefully.4Respond with "Yes" or
"No".
Name A: {A}
Name B: {B}

The placeholders {record_type} and {additional_instructions} will vary by appli-
cation. The accuracy of LLM labels is often improved by including context-specific instructions or
examples (Ornstein, Blasingame, and Truscott 2025), just as a researcher would include a detailed
codebook if this step were conducted by human research assistants or crowd-coders.

Step 4: Fit Supervised Learner. Fit a probabilistic model to map these cosine similarities onto a match
probability. In the analyses that follow, I fit a logistic regression, which has the advantage of being
significantly faster at generating predictions for large datasets than other supervised learners. I include as
predictors both embedding similarity and Jaro-Winkler similarity, to capture both semantic and lexical
differences between records.5

Step 5: Label Informative Cases. Estimatematch probabilities for all record pairs in the setA×B using
the fitted model from Step 4. SelectNL record pairs to label using uncertainty sampling, where selection
probability is determined by a Gaussian kernel centered on match probability of 1

2 (Enamorado 2018).6
Assign labels to these record pairs as in Step 3. Add the new labeled observations to the training set
and refit the model as in Step 4. Repeat these steps until a stopping criterion is met. In this article’s
analyses, I labelNL = 100 record pairs per active learning iteration, and stop when none of the estimated
probabilities f (X) change by more than 0.01 between iterations.

2021, meaning the approach will underperform if successfully linking records requires knowledge of events that have occurred
since that date.

2An alternative approach to computing embedding similarity—called cross-encoders (Lin 2025)—is to pass string pairs
directly to a transformer model, outputting a similarity score. Although such an approach could improve accuracy, it would
come at the cost of quadratic computational complexity during the embedding step, so I do not implement it here.

3In the Supplementary Material, I replicate the article’s empirical applications using open-source language models for the
embedding and labeling steps. The advantage of open-source models is that their results are fully reproducible, though this
comes at the expense of poorer record linkage accuracy. I discuss this tradeoff more fully in Section 4.

4Bizarre as it may seem, prompts that include phrases like “Think carefully” often yield marginal gains in classification
accuracy (Battle and Gollapudi 2024).

5In Section A.1 of the Supplementary Material, I vary the model specification in Step 4 and show that this choice yields the
best-calibrated probability estimates.

6Formally, selection probability is based on estimated log-odds. I use the kernel N(0,0.2), which has 95% of its mass
between 40% and 60% match probability.
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Step 6: LinkDatasets. If the number of labeled record pairs is fewer than a researcher-specified budget
Nmax, continue labeling record pairs from A without an identified match in B. This will generally
improve recall by identifying true matches with low estimated match probabilities. Return all record
pairs and their estimated match probability. Optionally, only return record pairs with an estimated
match probability greater than π, where π is selected to maximize expected F1 score.7

3. Applications

In this section, I describe four applications of the method, testing its performance across a variety of
record linkage tasks common in political science. The first application merges the names of over 9,000
candidates for public officewith voter file records from tens ofmillions of registered voters in California.
The second application replicates an analysis merging misspelled names of U.S. cities with a dataset of
place names from the U.S. Census Bureau. The third application merges the names of interest groups
with ideology scores estimated from campaign contributions. And the final application explores how
well the method can perform record linkage across multiple languages, merging the names of political
parties from 32 countries in 30 different languages.

For each application, I evaluate performance by computing both precision and recall, where precision
measures the fraction of identified matches that are correct, and recall measures the fraction of correct
matches that are identified.

Precision = True Positives
True Positives+False Positives

Recall = True Positives
True Positives+False Negatives

.

Any method that performs well on both of these metrics is likely to be particularly useful for
researchers. Higher precision increases the quality of matches, reducing measurement error in sub-
sequent empirical analyses. Higher recall reduces the amount of missing data in the linked dataset,
increasing the statistical power of downstream analyses (Kaufman and Klevs 2022)—as well as reducing
bias whenever that missingness is non-random.

3.1. Linking Candidates to Voter File Records
Every year, hundreds of thousands of candidates are elected to local public office throughout the United
States. Collecting data on these elections can be a painstaking process (de Benedictis-Kessner et al. 2023;
Einstein, Ornstein, and Palmer 2022; Sumner, Farris, and Holman 2020), because unlike candidates for
state and federal office, there is often very little information recorded about local candidates except their
names. In this application, I merge the names of every candidate for mayor and city council in the state
of California since 2016 with their corresponding records in the L2 voter file. There are a total of 9,025
unique candidate names, and roughly 22 million registered voters in the California voter file.8 I merge
these two datasets using full name as the fuzzy matching string and exact blocking on last name and
city of residence. To make validation feasible, the author and a research assistant hand-coded matches
from three counties—Alameda, Kern, and Ventura—to estimate precision and recall.

Of the 840 candidates that ran for office in these three counties,fuzzylink identified 770 potential
matches in the voter file. 154 of these were exact matches, and the research team determined that 584 of
the remaining fuzzy matches were valid, for an estimated precision of 95.8%. In addition, the research

7The F1 score is the harmonic mean of precision and recall, as defined in Section 3. This step will typically remove a large
number of record pairs to which the model assigns a very low match probability, significantly reducing the difficulty of post-
merge manual validation (Section 4).

8The California Election Data Archive (CEDA) is available at http://www.csus.edu/isr/projects/ceda.html.
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team was able to locate 32 matches in the L2 voter file that fuzzylink failed to identify,9 for an
estimated recall rate of 95.8%. By comparison, the fastLink approach (Enamorado et al. 2019)—
which links records based on predetermined cutoffs in Jaro-Winkler scores10—identifies only 521
potential matches, with an estimated precision of 93.3% and recall of 63.1%.The dramatically improved
recall is largely due to fuzzylink successfully linking a variety of nicknames from the candidate list
with legal names in the voter file (e.g., “Vinnie” with “Vinton,” “Chuck” with “Charles,” “Libby” with
“Elizabeth,” “Trish” with “Patricia,” “Mel” with “Carmelita,” “Sri” with “Sricharana,” and “Teddy” with
“Theadora”).There are also a number of cases where candidates go by their middle name (e.g., “Gregory
Tod Abbott” listed as “Tod Abbott” on the ballot) and are correctly paired by the LLM prompt.

It is worth noting, in light of ongoing debates over algorithmic bias in language models (Abid,
Farooqi, and Zou 2021; Grossmann et al. 2023), that a disproportionate share of false positive matches
(26 out of 32) are Asian, Hispanic, or African American names. As with any record linkage procedure,
researchers should take the time to carefully examine a subset of the merged dataset and ensure that the
method is performing as expected. Fortunately, the estimated match probabilities are well-calibrated
(see Section A.1 of the Supplementary Material) and can serve as a useful guide during validation: the
false positives had a median match probability of just 22%, compared to 58% for the true positives. One
could eliminate over half of the false positives in themerged dataset bymanually validating only the 188
least-probable matches.

3.2. Linking Misspelled City Names to U.S. Census Bureau Records
Next, I replicate a record linkage task from Kaufman and Klevs (2022), which allows for a direct
comparison between the two approaches. There are four key differences between the fuzzylink
algorithm and the AFSM algorithm proposed by Kaufman and Klevs (2022): (1) the inclusion of
embedding similarity as a predictor of match quality, (2) the use of automated labeling by LLMs
instead of human coders, (3) a logistic regression classifier instead of random forest, and (4) selecting
record pairs to label through uncertainty sampling. See Section A of the Supplementary Material for a
detailed ablation analysis, exploring the effect of each of these choices.

The first dataset contains information on 661,218 loan recipients from the 2021 Paycheck Protection
Program (PPP) implemented by the U.S. federal government in the wake of the COVID-19 pandemic.
This dataset contains each recipient’s address, but the city name provided is rarely an exact match
with place names as listed by the U.S. Census Bureau. If a researcher wanted to determine which U.S.
municipalities were receiving funds through this program, it would require linking 7,118misspelled city
names in the PPP records with a place-level dataset of 28,889 incorporated towns and cities maintained
by the Census, blocking by state.

This is another application where methods that rely on lexical similarity alone can fall short, because
many pairs of cities have quite similar names, potentially yielding a large number of false positive
matches. Replicating the AFSM procedure as described in Kaufman and Klevs (2022) yields a set of
1,075 city pairs for which the model assigns a match probability greater than 90%. Of these record pairs,
only 705 were confirmed as true matches by the research team, for an estimated precision of 66%. Some
examples of the 370 false positive matches includeWingdale NY→Walden NY, Deerpark TX→ Parker
TX, Maple TX→ Palmer TX, Lamont MI→ Almont MI, Delair NJ→ Garfield NJ, and Malone WI→
Montreal WI.

Adding embedding similarity as a predictor in the AFSM algorithm significantly improves per-
formance, increasing precision to 84% and the number of matches correctly identified to 1,049 (see
Table 2). But despite this improvement, the approach still struggleswithmore challenging cases, yielding
a number of false positive matches like Saint Augustine FL→ Saint Augustine Beach FL, Preston CT→
New Preston CT, and Swanzey NH→West Swanzey NH.

9This search was conducted with the aid of local newspaper articles, campaign websites, and obituaries.
10I use the package’s default thresholds of 0.88 for a partial match and 0.94 for a full match.
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Table 2. Performance metrics for city namemerge across three algorithms.

Algorithm True matches identified Precision

AFSM 705 65.6%

AFSMwith embeddings 1,049 84.1%

fuzzylink 2,451 98.0%

The fuzzylink algorithm dramatically improves over both these approaches, more than doubling
the number of true matches recalled with near-perfect precision. Key to this performance is the
combination of uncertainty sampling and accurate LLM labeling, so that challenging cases like the ones
mentioned above are identified and correctly labeled by the LLM during the active learning loop. Not
only is precision improved by removing these false positives, but recall is improved by identifying true
matches with low lexical similarity.These includeOKC→OklahomaCity, Olympic ValleyWA→ Squaw
ValleyWA, and USAF Academy CO→Air Force Academy CO.The algorithm also correctly pairs cases
where the PPP loan recipient listed a neighborhood rather than a city in their address, like Astoria NY
→Queens NY, Newbury Park CA→Thousand Oaks CA, and Port Bolivar TX→ Bolivar Peninsula TX.

3.3. Linking Amicus Cosigners to Campaign Donations
For the article’s third application, I replicate the record linkage from Abi-Hassan et al. (2023), who
estimate the ideology of interest groups by merging the names of organizations that cosigned Supreme
Court amicus curiae briefs (Box-Steffensmeier, Christenson, and Hitt 2013) with ideal point estimates
(DIME scores) from campaign donations (Bonica 2014).There are 15,376 organizations in their dataset
and 2.9 million organizations with recorded campaign donations in the DIME dataset. The scale of
these datasets poses a significant practical challenge for computation and validation—without any
blocking variables, linking the full versions of both datasets requires computing approximately 38 billion
pairwise similarity scores. To make manual validation feasible, I focus here on the 1,388 organizations
that cosigned amicus briefs in the year 2012, and to reduce computational complexity, I also restrict
the DIME dataset to organizations with at least eight distinct campaign contributions. This is both
a practical and principled choice, since “donating to eight or more distinct recipients is [typically]
sufficient to recover a reliable ideal point estimate” (Bonica 2023).

Through a combination of exact matching and fuzzy string matching, Abi-Hassan et al. (2023) were
able to locate DIME scores for 376 of these 1,388 organizations, approximately 27% of the total. By
comparison, despite restricting its search to only 8% of the DIME dataset, fuzzylink is able to locate
DIME scores for 437 unique organizations. As in the first application, this dramatically improved recall
is largely the result of correctly identifying alternative names for the same organization (e.g., “Utah
Association for Justice” and the “Utah Trial Lawyers Association,” “California Forestry Association” and
“CA Forestry Assoc PAC,” and “Ojibwe” and “Chippewa” tribes) and even former names of the same
organization (e.g., “Airlines For America” formerly “Air Transport Association of America,” “California
Construction Trucking Association” formerly “California Dump Truck Owners Association,” “United
States TelecomAssocation” formerly “United States TelephoneAssn,” and “PacifiCorp” formerly “Pacific
Power & Light”).This improved recall does not appear to come at the expense of precision: the research
team identified only three false positives out of 939 proposed matches, for an estimated precision of
99.6%. Note that this estimate considers chapters or subsidiaries of larger organizations to be true
matches (e.g., linking “NAIOP” and “NAIOP New Jersey Chapter”), under the assumption that one can
use campaign donations of local chapters to make inferences about the parent organization’s ideology. If
one were unwilling to make such an assumption, those matches could easily be filtered out post-merge,
or one could modify the LLM prompt in Step 3 to ignore such matches.
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Table 3. Multilingual record linkage application: splitting the Parlgov data into two sets with 4,972 observations
each.

Native party names:

country_name election_date party_name seats

Austria 1919-02-16 Sozialdemokratische Partei Österreichs 72

Austria 1919-02-16 Österreichische Volkspartei 69

Austria 1919-02-16 Deutschnationale 8

Austria 1919-02-16 Deutsche Freiheits und Ordnungspartei 5

. . . .

. . . .

Turkey 2023-05-14 Zafer Partisi 0

English party names:

country_name election_date party_name left_right

Austria 1919-02-16 Social Democratic Party of Austria 3.7293

Austria 1919-02-16 Austrian People’s Party 6.4733

Austria 1919-02-16 German-Nationals 7.4000

Austria 1919-02-16 German Freedom and Order Party 8.8000

. . . .

. . . .

Turkey 2023-05-14 Victory Party 8.8000

Note: The first dataset contains each party’s name in the country’s native language, and the second dataset contains the English
name of each political party.

3.4. Linking Political Party Names Across Multiple Languages
For record linkage problems involving multiple languages, lexical similarity measures tend to be a poor
guide to match quality. The strings “LDP” and “Jiyū Minshutō,” for example, share no lexical features
at all, but both refer to the same Japanese political party. Pretrained text embeddings, by comparison,
can naturally accommodate this sort of problem by representing text from multiple languages in the
same embedding space.This makes transformer models particularly adept at machine translation tasks
(Vaswani et al. 2017). In this application, I demonstrate that the approach proposed here can successfully
link the names of political parties across 30 languages—thoughperformance is better for some languages
than for others.

To test the method, I take the ParlGov dataset of parliamentary elections since 1900 (Döring and
Manow 2018), splitting it into two datasets as illustrated in Table 3.The first dataset contains each party’s
name in its native language, the election year, and the number of seats the party won in parliament that
year. The second dataset contains the English translation of the party’s name along with its estimated
left-right ideology on a scale from 0 (leftmost) to 10 (rightmost). I include all parties from non-English
speaking countries that won seats in parliament, for a total of 4,972 observations across 32 countries and
663 elections. Because text embeddings may be closer in space for some language pairs than others,11
I perform this record linkage separately for each country, blocking on election date.

11For example, as measured by cosine similarity, the phrase “Social Democratic Party” is much closer to the Portuguese
“Partido Social Democrata” (0.80) than it is to the Icelandic Social Democratic Party “Alýuflokkurinn” (0.44). However,
“Alýuflokkurinn” is closest to “Social Democratic Party” relative to other Icelandic parties, so the probabilistic model will
perform best if we avoid pooling embedding distances across language pairs.
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Figure 1. Estimated seat-weighted parliamentary ideology following merge (points) plotted over true values (lines).

The resulting dataset correctly matches 4,855 name pairs out of 4,972—a recall rate of 97.6%. There
are, however, a large number of false positive matches (453 in total), for an overall precision of 91.5%.
As expected, the method’s accuracy varies somewhat by language: precision and recall are lower for
countries like Israel (68.9% precision, 87.0% recall) and Japan (79.1% precision and 94.6% recall) than
for Italy (98.3% precision, 99.6% recall) or Portugal (100% precision, 100% recall). See Table A4 in the
Supplementary Material for a complete list of these evaluation metrics by country.

In addition to computing these accuracy metrics, one can evaluate whether the record linkage
procedure allows us to recover downstream quantities of interest. Figure 1 plots the seat-share weighted
ideology of every parliament in the ParlGov dataset (lines) along with each parliament’s estimated
ideology following the record linkage (points).12 The correlation between the estimates and their true
values is 0.964, and the estimates are perfectly correlated with the truth in most countries. Only a few
country-years stand out as severely mis-estimated. In Switzerland, the model incorrectly links the FDP
(“Freisinnig-Demokratische Partei der Schweiz”) with both the Liberal Party of Switzerland and the
Radical Democratic Party.These two parties merged in 2009, but they were separate parties throughout
the prior century, which biases our estimates rightwards for much of the 20th century. In Israel, the
model incorrectly links the Labor Party (“HaAvoda”) with the right-wing Likud, and in Turkey, the
model fails to identify a match for the Social Democratic Populist Party. In both cases, these errors bias
the estimates rightward.

In practice, errors like these can be easily corrected by conducting a post-merge manual validation,
focusing on records inA that did not match to a single unique record inB. In this case, it would require
manually checking only 128 proposed matches, roughly 2% of the total.

12For each party in A, estimated ideology is computed as the average ideology of its matches in B, weighted by match
probability.
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4. Discussion

The approach I propose here has significant advantages over methods that rely on lexical similarity
measures alone. Social scientists often encounter record linkage problems where matching entities
may be lexically dissimilar from one another, whether it’s due to alternative names, acronyms, or even
different languages. Under such conditions, the fuzzylink procedure can significantly improve both
precision and recall. And it does so without requiring significant expenditure in time ormoney. None of
the applications described in the previous section took longer than a few hours to execute on a personal
computer or cost more than $10 in API fees (see Section B of the Supplementary Material for a more
thorough cost breakdown).

Despite these advantages, there are several situations in which the proposed approach is likely to
fall short or prove unnecessary. For example, when merging large-scale administrative datasets with
tens or hundreds of millions of records, researchers are likely to prefer the added efficiency of an
unsupervised approach like fastLink (Enamorado et al. 2019). Particularly when such datasets
contain a large number of identifying fields, the marginal gains in accuracy from a supervised approach
like fuzzylink are unlikely to be worth the loss of efficiency. The proposed approach is also likely
to fail when pretrained language models do not encode the relevant world knowledge necessary to link
two records. The embeddings used in this article, for example, are trained only on data collected before
September 2021, and will therefore struggle to perform any record linkage task that requires knowledge
of events after that date. Post-merge clerical review is essential to ensure the accuracy of the LLM labels,
replacing them with human labels in cases where they perform poorly. Finally, researchers will find this
approach unnecessary in applications where discrepancies between records are due solely to typos or
misspellings, in which case embedding similarity offers little predictive advantage over lexical similarity
alone.

I have focused in this article on applications where there is a single fuzzy string matching variable,
but the sorts of record linkage problems faced by social scientists often include many such variables.
Fortunately, the method can be extended in a number of ways. One approach would be to re-express
multiple fuzzy variables as a single string, which can then be represented as an embedding. For example,
a record with {name} and {address} fields might be represented by the string “My name is {name}
and I live at {address}.” Another approach would be to estimate a match probability separately for each
variable as I have done here, and then use thosematch probabilities as inputs in the Fellegi–Suntermodel
(Enamorado et al. 2019). Further research is needed to determine which approach yields better results.

Another limitation of the method as presented is its reliance on proprietary language models.
Because these models are closed-source and operated by for-profit entities, they can be deprecated or
modified at any time without the consent of their users. Consequently, the results that fuzzylink
produces—including those presented in this article—are not fully reproducible. Though a researcher
could replicate the steps I used to generate the results, within a few years, it will be impossible to
reproduce them exactly. For this reason, many scholars in our discipline have urged using open-source
language models wherever possible (Spirling 2023).

Unfortunately, as of writing, it is difficult to see how the method presented here could be undertaken
using open-source language models. Frankly, the level of accuracy I demonstrate here would not have
been possible even using the previous generation of proprietary language models. In the Supplementary
Material, I attempt to replicate the article’s empirical applications using one of the highest performing
open-source language models currently available (Mistral 8x22B), as well as the previous generation
of language models released by OpenAI as of early 2023 (GPT-3.5). These variants significantly
underperform the results reported in the previous section, particularly for the organization matching
and multilingual record linkage applications. Given the rapid development of open-source language
models, it is likely that there will be an acceptable open-source solution in the coming years, but until
that time, the accuracy gains from proprietary models outweigh their drawbacks.

When a research method falls short of full computational reproducibility, one must insist that it
meet standards of replicability (procedures are transparently documented so that other scholars can
independently replicate them) and reliability (repeated application of the procedure yields similar, if
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not identical, outcomes). Indeed, these are the standards that our discipline applies to other non-
reproducible research methods, like those that rely on human research assistants or crowd-coders. The
fuzzylink software package13 was developed to help researchers implement the method proposed
here in a straightforward and replicablemanner, and I hope that it will enablemuch useful social science
research in the coming years.
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